Hepatotoxicity of butylated hydroxytoluene and its analogs in mice depleted of hepatic glutathione

Butylated hydroxytoluene (2,6-di-tert-butyl-4-methylphenol, BHT) has been reported to be a lung toxicant. Mice treated with BHT (200-800 mg/kg, po) in combination with an inhibitor of glutathione (GSH) synthesis, buthionine sulfoximine (BOS; 1 hr before and 2 hr after BHT, 4 mmol/kg per dose, ip) de...

Full description

Saved in:
Bibliographic Details
Published inToxicology and applied pharmacology Vol. 87; no. 1; p. 166
Main Authors Mizutani, T, Nomura, H, Nakanishi, K, Fujita, S
Format Journal Article
LanguageEnglish
Published United States 01.01.1987
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Butylated hydroxytoluene (2,6-di-tert-butyl-4-methylphenol, BHT) has been reported to be a lung toxicant. Mice treated with BHT (200-800 mg/kg, po) in combination with an inhibitor of glutathione (GSH) synthesis, buthionine sulfoximine (BOS; 1 hr before and 2 hr after BHT, 4 mmol/kg per dose, ip) developed hepatotoxicity characterized by an increase in serum glutamic pyruvic transaminase (GPT) activity and centrilobular necrosis of hepatocytes. The hepatotoxic response was both time- and dose-dependent. BHT (up to 800 mg/kg) alone produced no evidence of liver injury. As judged by the observation of normal serum GPT, drug metabolism inhibitors such as SKF-525A, piperonyl butoxide, and carbon disulfide prevented the hepatotoxic effect of BHT given in combination with BSO. On the other hand, pretreatment with cedar wood oil resulted in increased hepatic injury in mice treated with both BHT and BSO. Pretreatment with phenobarbital also tended to increase hepatic injury as judged by changes in serum GPT. These results suggest that BHT is activated by a cytochrome-P-450-dependent metabolic reaction and that the hepatotoxic effect is caused by inadequate rates of detoxification of the reactive metabolite in mice depleted of hepatic GSH by BSO administration. The hepatotoxic potencies of BHT-related compounds also were examined in BSO-treated animals. For hepatotoxicity, the phenolic ring must have benzylic hydrogen atoms at the 4 position and an ortho-alkyl group(s) that moderately hinders the hydroxyl group. These structural requirements essentially are the same as those for the toxic potency in the lung (T. Mizutani, I. Ishida, K. Yamamoto, and K. Tajima (1982), 62, 273-281) and support the hypothesis that BHT-quinone methide plays a role in producing liver damage in mice with depressed hepatic GSH levels.
ISSN:0041-008X
DOI:10.1016/0041-008x(87)90094-9