Undernutrition in Utero Augments Systolic Blood Pressure and Cardiac Remodeling in Adult Mouse Offspring: Possible Involvement of Local Cardiac Angiotensin System in Developmental Origins of Cardiovascular Disease
Evidence has emerged that undernutrition in utero is a risk factor for cardiovascular disorders in adulthood, along with genetic and environmental factors. Recently, the local expression of angiotensinogen and related bioactive substances has been demonstrated to play a pivotal role in cardiac remod...
Saved in:
Published in | Endocrinology (Philadelphia) Vol. 148; no. 3; pp. 1218 - 1225 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bethesda, MD
Endocrine Society
01.03.2007
Oxford University Press |
Subjects | |
Online Access | Get full text |
ISSN | 0013-7227 1945-7170 |
DOI | 10.1210/en.2006-0706 |
Cover
Loading…
Summary: | Evidence has emerged that undernutrition in utero is a risk factor for cardiovascular disorders in adulthood, along with genetic and environmental factors. Recently, the local expression of angiotensinogen and related bioactive substances has been demonstrated to play a pivotal role in cardiac remodeling, i.e. fibrosis and hypertrophy. The aim of the present study was to clarify the possible involvement of the local cardiac angiotensin system in fetal undernutrition-induced cardiovascular disorders. We developed a mouse model of undernutrition in utero by maternal food restriction, in which offspring (UN offspring) showed an increase in systolic blood pressure (8 wk of age, P < 0.05; and 16 wk, P < 0.01), perivascular fibrosis of the coronary artery (16 wk, P < 0.05) and cardiac cardiomegaly (16 wk, P < 0.01), and cardiomyocyte enlargement, concomitant with a significant augmentation of angiotensinogen (P < 0.05) and endothelin-1 (P < 0.01) mRNA expression and a tendency to increase in immunostaining for both angiotensin II and endothelin-1 in the left ventricles (16 wk). These findings suggest that fetal undernutrition activated the local cardiac angiotensin system-associated bioactive substances, which contributed, at least partly, to the development of cardiac remodeling in later life, in concert with the effects of increase in blood pressure. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0013-7227 1945-7170 |
DOI: | 10.1210/en.2006-0706 |