(S)-1,2,3,4-Tetrahydroisoquinoline Derivatives Substituted with an Acidic Group at the 6-Position as a Selective Peroxisome Proliferator-Activated Receptor γ Partial Agonist

A novel series of 2,6,7-substituted 3-unsubstituted 1,2,3,4-tetrahydroisoquinoline derivatives were synthesized to find a peroxisome proliferator-activated receptor γ (PPARγ) partial agonist. Among the derivatives, (E)-7-[2-(cyclopent-3-eny)-5-methyloxazol-4-ylmethoxy]-2-[3-(2-furyl)acryloyl]-6-(1H-...

Full description

Saved in:
Bibliographic Details
Published inChemical & pharmaceutical bulletin Vol. 67; no. 11; pp. 1211 - 1224
Main Authors Morishita, Ko, Miike, Tomohiro, Takeda, Shigemitsu, Fukui, Masaki, Ito, Yuma, Kitao, Tatsuya, Ozawa, Shin-ichiro, Hirono, Shuichi, Shirahase, Hiroaki
Format Journal Article
LanguageEnglish
Published TOKYO The Pharmaceutical Society of Japan 01.11.2019
Pharmaceutical Soc Japan
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A novel series of 2,6,7-substituted 3-unsubstituted 1,2,3,4-tetrahydroisoquinoline derivatives were synthesized to find a peroxisome proliferator-activated receptor γ (PPARγ) partial agonist. Among the derivatives, (E)-7-[2-(cyclopent-3-eny)-5-methyloxazol-4-ylmethoxy]-2-[3-(2-furyl)acryloyl]-6-(1H-tetrazol-5-yl)-1,2,3,4-tetrahydroisoquinoline (20g) exhibited potent partial agonist activity (EC50 = 13 nM, maximal response 30%) and very weak protein tyrosine phosphatase 1B (PTP1B) inhibition (IC50 = 1100 nM), indicating a selective PPARγ partial agonist. A computational docking calculation revealed that 20g bound to PPARγ in a similar manner to that of known partial agonists. In male and female KK-Ay mice with insulin resistance and hyperglycemia, 20g at 30 mg/kg for 7 d significantly reduced plasma glucose levels, but not triglyceride levels. The effects of 20g were similar to those of pioglitazone at 10 mg/kg. In conclusion, the 2,6,7-substituted 1,2,3,4-tetrahydroisoquinoline with an acidic group at the 6-position provides a novel scaffold for selective PPARγ partial agonists and 20g exerted anti-diabetic effects via the partial activation of PPARγ.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0009-2363
1347-5223
DOI:10.1248/cpb.c19-00541