The genetic control of plastid division in higher plants

The division of plastids is an important part of plastid differentiation and development and in distinct cell types, such as leaf mesophyll cells, results in large populations of chloroplasts. The morphology and population dynamics of plastid division have been well documented, but the molecular con...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of botany Vol. 84; no. 8; pp. 1017 - 1027
Main Author Pyke, Kevin A.
Format Journal Article
LanguageEnglish
Published United States Botanical Soc America 01.08.1997
American Botanical Society
Botanical Society of America, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The division of plastids is an important part of plastid differentiation and development and in distinct cell types, such as leaf mesophyll cells, results in large populations of chloroplasts. The morphology and population dynamics of plastid division have been well documented, but the molecular controls underlying plastid division are largely unknown. With the isolation of Arabidopsis mutants in which specific aspects of plastid and proplastid division have been disrupted, the potential exists for a detailed knowledge of how plastids divide and what factors control the rate of division in different cell types. It is likely that knowledge of plant homologues of bacterial cell division genes will be essential for understanding this process in full. The processes of plastid division and expansion appear to be mutually independent processes, which are compensatory when either division or expansion are disrupted genetically. The rate of cell expansion appears to be an important factor in initiating plastid division and several systems involving rapid cell expansion show high levels of plastid division activity. In addition, observation of plastids in different cell types in higher plants shows that cell-specific signals are also important in the overall process in determining not only the differentiation pathway of plastids but also the extent of plastid division. It appears likely that with the exploitation of molecular techniques and mutants, a detailed understanding of the molecular basis of plastid division may soon be a reality
Bibliography:F50
F60
F30
1997059925
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-9122
1537-2197
DOI:10.2307/2446145