An economic impact metric for evaluating wave height forecasters for offshore wind maintenance access

This paper demonstrates that wave height forecasters chosen on statistical quality metrics result in sub‐optimal decision support for offshore wind farm maintenance. Offshore access is constrained by wave height, but the majority of approaches to evaluating the effectiveness of a wave height forecas...

Full description

Saved in:
Bibliographic Details
Published inWind energy (Chichester, England) Vol. 19; no. 2; pp. 199 - 212
Main Authors Catterson, V. M., McMillan, D., Dinwoodie, I., Revie, M., Dowell, J., Quigley, J., Wilson, K.
Format Journal Article
LanguageEnglish
Published Bognor Regis Blackwell Publishing Ltd 01.02.2016
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper demonstrates that wave height forecasters chosen on statistical quality metrics result in sub‐optimal decision support for offshore wind farm maintenance. Offshore access is constrained by wave height, but the majority of approaches to evaluating the effectiveness of a wave height forecaster utilize overall accuracy or error rates. This paper introduces a new metric more appropriate to the wind industry, which considers the economic impact of an incorrect forecast above or below critical wave height boundaries. The paper describes a process for constructing a value criterion where the implications between forecasting error and economic consequences are explicated in terms of opportunity costs and realized maintenance costs. A comparison between nine forecasting techniques for modeling and predicting wave heights based on historical data, including an ensemble aggregator, is described demonstrating that the performance ranking of forecasters is sensitive to the evaluation criteria. The results highlight the importance of appropriate metrics for wave height prediction specific to the wind industry and the limitations of current models that minimize a metric that does not support decision‐making. With improved ability to forecast weather windows, maintenance scheduling is subject to less uncertainty, hence reducing costs related to vessel dispatch, and lost energy because of downtime. Copyright © 2015 John Wiley & Sons, Ltd.
Bibliography:istex:1EF02403737785B1398E4DABEBCF2A2FB2DF9A3F
ark:/67375/WNG-T5F1FPBX-7
ArticleID:WE1826
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1095-4244
1099-1824
DOI:10.1002/we.1826