Rare Nonconservative LRP6 Mutations Are Associated with Metabolic Syndrome
ABSTRACT A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The prevalence and spectrum of LRP6 mutations in the disease population of the United States is not known. Two hundred white Americans with early...
Saved in:
Published in | Human mutation Vol. 34; no. 9; pp. 1221 - 1225 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.09.2013
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1059-7794 1098-1004 1098-1004 |
DOI | 10.1002/humu.22360 |
Cover
Loading…
Abstract | ABSTRACT
A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The prevalence and spectrum of LRP6 mutations in the disease population of the United States is not known. Two hundred white Americans with early onset familial CAD and metabolic syndrome and 2,000 healthy Northern European controls were screened for nonconservative mutations in LRP6. Three novel mutations were identified, which cosegregated with the metabolic traits in the kindreds of the affected subjects and none in the controls. All three mutations reside in the second propeller domain, which plays a critical role in ligand binding. Two of the mutations substituted highly conserved arginines in the second YWTD domain and the third substituted a conserved glycosylation site. The functional characterization of one of the variants showed that it impairs Wnt signaling and acts as a loss of function mutation.
LRP6 is a member of LDL receptor family of proteins, which is widely known for its diverse functions as a coreceptor for the Wnt family of proteins during embryonic development. Recent studies have shown its involvement in regulation of vascular integrity, blood pressure, plasmaglucose and lipids and bone mineralization in adult life. |
---|---|
AbstractList | A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The prevalence and spectrum of LRP6 mutations in the disease population of the United States is not known. Two hundred white Americans with early onset familial CAD and metabolic syndrome and 2,000 healthy Northern European controls were screened for nonconservative mutations in LRP6. Three novel mutations were identified, which cosegregated with the metabolic traits in the kindreds of the affected subjects and none in the controls. All three mutations reside in the second propeller domain, which plays a critical role in ligand binding. Two of the mutations substituted highly conserved arginines in the second YWTD domain and the third substituted a conserved glycosylation site. The functional characterization of one of the variants showed that it impairs Wnt signaling and acts as a loss of function mutation. LRP6 is a member of LDL receptor family of proteins, which is widely known for its diverse functions as a coreceptor for the Wnt family of proteins during embryonic development. Recent studies have shown its involvement in regulation of vascular integrity, blood pressure, plasmaglucose and lipids and bone mineralization in adult life. A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The prevalence and spectrum of LRP6 mutations in the disease population of the United States is not known. Two hundred white Americans with early onset familial CAD and metabolic syndrome and 2,000 healthy Northern European controls were screened for nonconservative mutations in LRP6. Three novel mutations were identified, which cosegregated with the metabolic traits in the kindreds of the affected subjects and none in the controls. All three mutations reside in the second propeller domain, which plays a critical role in ligand binding. Two of the mutations substituted highly conserved arginines in the second YWTD domain and the third substituted a conserved glycosylation site. The functional characterization of one of the variants showed that it impairs Wnt signaling and acts as a loss of function mutation. A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The prevalence and spectrum of LRP6 mutations in the disease population of the United States is not known. Two hundred white Americans with early onset familial CAD and metabolic syndrome and 2,000 healthy Northern European controls were screened for nonconservative mutations in LRP6. Three novel mutations were identified, which cosegregated with the metabolic traits in the kindreds of the affected subjects and none in the controls. All three mutations reside in the second propeller domain, which plays a critical role in ligand binding. Two of the mutations substituted highly conserved arginines in the second YWTD domain and the third substituted a conserved glycosylation site. The functional characterization of one of the variants showed that it impairs Wnt signaling and acts as a loss of function mutation.A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The prevalence and spectrum of LRP6 mutations in the disease population of the United States is not known. Two hundred white Americans with early onset familial CAD and metabolic syndrome and 2,000 healthy Northern European controls were screened for nonconservative mutations in LRP6. Three novel mutations were identified, which cosegregated with the metabolic traits in the kindreds of the affected subjects and none in the controls. All three mutations reside in the second propeller domain, which plays a critical role in ligand binding. Two of the mutations substituted highly conserved arginines in the second YWTD domain and the third substituted a conserved glycosylation site. The functional characterization of one of the variants showed that it impairs Wnt signaling and acts as a loss of function mutation. A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The prevalence and spectrum of LRP6 mutations in the disease population of the United States is not known. Two hundred white Americans with early onset familial CAD and metabolic syndrome and 2000 healthy Northern European controls were screened for nonconservative mutations in LRP6 . Three novel mutations were identified, which co-segregated with the metabolic traits in the kindreds of the affected subjects and none in the controls. All three mutations reside in the second propeller domain, which plays a critical role in ligand binding. Two of the mutations substituted highly conserved arginines in the second YWTD domain and the third substituted a conserved glycosylation site. The functional characterization of one of the variants showed that it impairs Wnt signaling and acts as a loss of function mutation. ABSTRACT A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The prevalence and spectrum of LRP6 mutations in the disease population of the United States is not known. Two hundred white Americans with early onset familial CAD and metabolic syndrome and 2,000 healthy Northern European controls were screened for nonconservative mutations in LRP6. Three novel mutations were identified, which cosegregated with the metabolic traits in the kindreds of the affected subjects and none in the controls. All three mutations reside in the second propeller domain, which plays a critical role in ligand binding. Two of the mutations substituted highly conserved arginines in the second YWTD domain and the third substituted a conserved glycosylation site. The functional characterization of one of the variants showed that it impairs Wnt signaling and acts as a loss of function mutation. LRP6 is a member of LDL receptor family of proteins, which is widely known for its diverse functions as a coreceptor for the Wnt family of proteins during embryonic development. Recent studies have shown its involvement in regulation of vascular integrity, blood pressure, plasmaglucose and lipids and bone mineralization in adult life. |
Author | Mani, Arya Fathzadeh, Mohsen Subrahmanyan, Lakshman McKenna, William Singh, Rajvir Smith, Emily Liu, Wenzhong Go, Gwang-Woong Faramarzi, Saeed |
AuthorAffiliation | 1 Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 3 Institute of Cardiovascular Science, University College London, London, UK 2 Department of Genetics, Yale University School of Medicine, New Haven, CT |
AuthorAffiliation_xml | – name: 2 Department of Genetics, Yale University School of Medicine, New Haven, CT – name: 3 Institute of Cardiovascular Science, University College London, London, UK – name: 1 Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT |
Author_xml | – sequence: 1 givenname: Rajvir surname: Singh fullname: Singh, Rajvir organization: Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, Connecticut, New Haven – sequence: 2 givenname: Emily surname: Smith fullname: Smith, Emily organization: Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, Connecticut, New Haven – sequence: 3 givenname: Mohsen surname: Fathzadeh fullname: Fathzadeh, Mohsen organization: Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, Connecticut, New Haven – sequence: 4 givenname: Wenzhong surname: Liu fullname: Liu, Wenzhong organization: Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, Connecticut, New Haven – sequence: 5 givenname: Gwang-Woong surname: Go fullname: Go, Gwang-Woong organization: Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, Connecticut, New Haven – sequence: 6 givenname: Lakshman surname: Subrahmanyan fullname: Subrahmanyan, Lakshman organization: Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, Connecticut, New Haven – sequence: 7 givenname: Saeed surname: Faramarzi fullname: Faramarzi, Saeed organization: Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, Connecticut, New Haven – sequence: 8 givenname: William surname: McKenna fullname: McKenna, William organization: Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut – sequence: 9 givenname: Arya surname: Mani fullname: Mani, Arya email: Arya.mani@yale.edu organization: Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23703864$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkVtv1DAQhSPUil7ghR-AIvGCkFJ8i528IC0VtEW7ZbWw4tGaOhPWJRsXO9my_x6HdCuoEDzZHn_naGbOUbLXuhaT5BklJ5QQ9nrVr_sTxrgkj5JDSsoii2WxN9zzMlOqFAfJUQjXhJAiz_nj5IBxRXghxWHyYQEe00vXGtcG9Bvo7AbT6WIu01nfxVcsp5OITEJwxkKHVXpru1U6ww6uXGNN-mnbVt6t8UmyX0MT8OndeZws37_7fHqeTT-eXZxOppkRBSeZAS5lXTGKFQA3CEoCqdAoYAbLGnJQDKBAXnAlCuBCMl5gwQGhjrqcHydvRt-b_mqNlcG289DoG2_X4LfagdV__rR2pb-6jY5-cfzB4OWdgXffewydXttgsGmgRdcHTXNBhnUy8n9UMEkILxWL6IsH6LXrfRs3oamShEohysHw-e_N33e9SyQCZASMdyF4rLWxYw5xFttoSvQQuh5C179Cj5JXDyQ717_CdIRvbYPbf5D6fDlb7jTZqLGhwx_3GvDftFRc5frL5Zme80Is3s6ppvwnXy_MYg |
CitedBy_id | crossref_primary_10_1007_s11883_024_01200_y crossref_primary_10_1002_mgg3_2045 crossref_primary_10_1016_j_ajhg_2018_01_015 crossref_primary_10_1007_s00018_024_05220_4 crossref_primary_10_1016_j_bone_2019_05_003 crossref_primary_10_1007_s00439_020_02124_8 crossref_primary_10_1007_s11596_022_2683_4 crossref_primary_10_1016_j_cmet_2013_11_023 crossref_primary_10_1016_j_gendis_2023_04_042 crossref_primary_10_1016_j_atherosclerosis_2017_06_001 crossref_primary_10_1016_j_carpath_2014_12_002 crossref_primary_10_1016_j_pneurobio_2014_07_004 crossref_primary_10_1007_s00056_021_00284_4 crossref_primary_10_1007_s12035_019_01700_y crossref_primary_10_1164_rccm_201401_0079OC crossref_primary_10_1038_boneres_2014_6 crossref_primary_10_1177_0022034520970459 crossref_primary_10_3389_fcell_2021_714330 crossref_primary_10_1016_j_molmet_2024_101905 crossref_primary_10_1242_dmm_025320 crossref_primary_10_1016_j_ajhg_2015_08_014 crossref_primary_10_1530_EC_21_0203 crossref_primary_10_1096_fj_15_271171 crossref_primary_10_1002_advs_202004993 crossref_primary_10_1038_tpj_2017_28 crossref_primary_10_1016_j_nutres_2018_06_009 crossref_primary_10_1016_j_atherosclerosis_2017_05_001 crossref_primary_10_1016_j_cmet_2015_01_009 crossref_primary_10_1093_cvr_cvz338 crossref_primary_10_1038_s41598_020_61869_4 crossref_primary_10_1016_j_cjca_2019_05_021 crossref_primary_10_1016_j_jbc_2024_108057 crossref_primary_10_3390_ijms241411786 crossref_primary_10_1161_CIRCRESAHA_118_314521 crossref_primary_10_2337_db15_0822 crossref_primary_10_1016_j_ydbio_2014_09_010 crossref_primary_10_1210_er_2015_1146 crossref_primary_10_1002_jgm_3245 crossref_primary_10_1016_j_atherosclerosis_2020_03_024 crossref_primary_10_1111_ahg_12254 crossref_primary_10_1016_j_molmet_2020_101078 crossref_primary_10_1111_cge_14491 crossref_primary_10_3390_nu7064453 crossref_primary_10_2337_dbi20_0015 crossref_primary_10_3389_fgene_2021_688241 crossref_primary_10_1002_jbm4_10717 crossref_primary_10_1016_j_molmet_2020_100992 crossref_primary_10_1097_MOL_0000000000000276 crossref_primary_10_1515_jbcpp_2021_0291 crossref_primary_10_1038_s41392_022_00955_7 crossref_primary_10_1111_ene_12735 crossref_primary_10_1155_2022_7542468 crossref_primary_10_1098_rsob_200128 crossref_primary_10_1016_j_ejphar_2015_03_093 crossref_primary_10_3390_ijms17071173 crossref_primary_10_1038_s41413_018_0023_x crossref_primary_10_1016_j_celrep_2015_09_028 crossref_primary_10_1080_21690707_2016_1255295 |
Cites_doi | 10.1038/nature05616 10.1073/pnas.1019443108 10.1074/jbc.M111.286724 10.1126/science.1142382 10.1016/j.cmet.2013.01.009 10.1146/annurev.cellbio.14.1.59 10.1038/ng.118 10.1086/425340 10.1038/nsmb.2139 10.1126/science.1099870 10.1002/humu.1380010602 10.1161/CIRCRESAHA.108.183863 10.1126/science.1136370 10.1073/pnas.1110629108 10.1186/1471-2121-4-4 10.1074/jbc.M111.295287 |
ContentType | Journal Article |
Copyright | 2013 WILEY PERIODICALS, INC. Copyright © 2013 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2013 WILEY PERIODICALS, INC. – notice: Copyright © 2013 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK 8FD FR3 K9. P64 RC3 7X8 5PM |
DOI | 10.1002/humu.22360 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1098-1004 |
EndPage | 1225 |
ExternalDocumentID | PMC3745535 3933255221 23703864 10_1002_humu_22360 HUMU22360 ark_67375_WNG_P384RBP1_1 |
Genre | shortCommunication Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH funderid: 1R01HL094574; 5R01HL094784 – fundername: NHLBI NIH HHS grantid: R01 HL094574 – fundername: NHLBI NIH HHS grantid: R01 HL094784 – fundername: NHLBI NIH HHS grantid: 5R01HL094784 – fundername: NHLBI NIH HHS grantid: 1R01HL094574 – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: R01 HL094784 || HL – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: R01 HL094574 || HL |
GroupedDBID | --- .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 29I 31~ 33P 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88A 88E 8C1 8FE 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BBNVY BDRZF BENPR BFHJK BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BVXVI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DVXWH EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GNP GODZA H.T H.X H13 HBH HCIFZ HF~ HHY HHZ HMCUK HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M0L M1P M66 M7P MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PIMPY PQQKQ PROAC PSQYO Q.N Q11 Q2X QB0 QRW R.K RHX RIWAO RJQFR ROL RWI RWV RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UDS UKHRP V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WTM WXSBR WYISQ X7M XG1 XSW XV2 ZZTAW ~IA ~KM ~WT AANHP ACCMX ACRPL ACYXJ ADNMO AAYXX AGQPQ CITATION PHGZM PHGZT RPM AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QP 7TK 8FD FR3 K9. P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c4830-ca366fd21edaa3cea76a0dec7a2ce9fa5a72aa8e383748a346238e83aeaf6fd53 |
IEDL.DBID | DR2 |
ISSN | 1059-7794 1098-1004 |
IngestDate | Thu Aug 21 13:41:59 EDT 2025 Fri Jul 11 03:40:34 EDT 2025 Fri Jul 11 10:52:45 EDT 2025 Fri Jul 25 19:43:31 EDT 2025 Mon Jul 21 05:55:34 EDT 2025 Thu Apr 24 22:51:54 EDT 2025 Tue Jul 01 04:33:46 EDT 2025 Wed Jan 22 16:21:28 EST 2025 Wed Oct 30 09:51:37 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | coronary artery disease metabolic syndrome mutation LRP6 |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 2013 WILEY PERIODICALS, INC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4830-ca366fd21edaa3cea76a0dec7a2ce9fa5a72aa8e383748a346238e83aeaf6fd53 |
Notes | ark:/67375/WNG-P384RBP1-1 ArticleID:HUMU22360 istex:5143B873A97EEAC215B8B9687CFDC5C6D38FDC60 NIH - No. 1R01HL094574; No. 5R01HL094784 Contract Grant Sponsor: NIH (1R01HL094574, 5R01HL094784). These authors contributed equally to this work. Communicated by Elizabeth F. Neufeld ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 23703864 |
PQID | 1760164490 |
PQPubID | 30498 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3745535 proquest_miscellaneous_1540223620 proquest_miscellaneous_1426003972 proquest_journals_1760164490 pubmed_primary_23703864 crossref_citationtrail_10_1002_humu_22360 crossref_primary_10_1002_humu_22360 wiley_primary_10_1002_humu_22360_HUMU22360 istex_primary_ark_67375_WNG_P384RBP1_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2013 |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 09 year: 2013 text: September 2013 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Human mutation |
PublicationTitleAlternate | Human Mutation |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc |
References | Berendsen AD, Fisher LW, Kilts TM, Owens RT, Robey PG, Gutkind JS, Young MF. 2011. Modulation of canonical Wnt signaling by the extracellular matrix component biglycan. Proc Natl Acad Sci USA 108(41):17022-17027. Mani A, Radhakrishnan J, Wang H, Mani M, Nelson-Williams C, Carew K, Mane S, Najmabadi H, Wu D, Lifton R. 2007. LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science 315(5816):1278-1282. Scott L, Mohlke K, Bonnycastle L, Willer C, Li Y, Duren W, Erdos M, Stringham H, Chines P, Jackson A, Prokunina-Olsson L, Ding CJ, et al. 2007. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316(5829):1341-1345. Kanazawa A, Tsukada S, Sekine A, Tsunoda T, Takahashi A, Kashiwagi A, Tanaka Y, Babazono T, Matsuda M, Kaku K, Iwamoto Y, Kawamori R, et al. 2004. Association of the gene encoding wingless-type mammary tumor virus integration-site family member 5B (WNT5B) with type 2 diabetes. Am J Hum Genet 75(5):832-843. Ye ZJ, Go GW, Singh R, Liu W, Keramati AR, Mani A. 2012. LRP6 protein regulates low density lipoprotein (LDL) receptor-mediated LDL uptake. J Biol Chem 287(2):1335-1344. Schweizer L, Varmus H. 2003. Wnt/Wingless signaling through beta-catenin requires the function of both LRP/Arrow and frizzled classes of receptors. BMC Cell Biol 4:4. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S, Balkau B, Heude B, et al. 2007. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445(7130):881-885. Ji W, Foo JN, O'Roak BJ, Zhao H, Larson MG, Simon DB, Newton-Cheh C, State MW, Levy D, Lifton RP. 2008. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet 40(5):592-599. Keramati AR, Singh R, Lin A, Faramarzi S, Ye ZJ, Mane S, Tellides G, Lifton RP, Mani A. 2011. Wild-type LRP6 inhibits, whereas atherosclerosis-linked LRP6R611C increases PDGF-dependent vascular smooth muscle cell proliferation. Proc Natl Acad Sci USA 108(5):1914-1918. Liu W, Mani S, Davis N, Sarrafzadegan N, Kavathas P, Mani A. 2008. Mutation in EGFP domain of LDL receptor-related protein 6 impairs cellular LDL clearance. Circ Res 103(11):1280-1288. Wodarz A, Nusse R. 1998. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 14:59-88. Singh R, De Aguiar RB, Naik S, Mani S, Ostadsharif K, Wencker D, Sotoudeh M, Malekzadeh R, Sherwin RS, Mani A. 2013. LRP6 enhances glucose metabolism by promoting TCF7L2-dependent insulin receptor expression and IGF receptor stabilization in humans. Cell Metab 17(2):197-209. Go GW, Mani A. 2012. Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J Biol Med 85(1):19-28. Cheng Z, Biechele T, Wei Z, Morrone S, Moon RT, Wang L, Xu W. 2011. Crystal structures of the extracellular domain of LRP6 and its complex with DKK1. Nat Struct Mol Biol 18(11):1204-1210. Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R, Hobbs HH. 2004. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305(5685):869-872. Hobbs HH, Brown MS, Goldstein JL. 1992. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat 1(6):445-466. Liu W, Singh R, Choi CS, Hui-Young L, Keramati AR, Samuel VT, Lifton RP, Shulman GI, Mani A. 2012. LDL Receptor Related Protein 6 (LRP6) regulates body fat and glucose homeostasis by modulating nutrient sensing pathways and mitochondrial energy expenditure. J Biol Chem 287(10):7213-7223. 2007; 445 2004; 75 2007; 316 2011; 108 2012; 287 2013; 17 2007; 315 2003; 4 2008; 103 2008; 40 2004; 305 2011; 18 1992; 1 2012; 85 1998; 14 Wodarz (10.1002/humu.22360-BIB0016|humu22360-cit-0016) 1998; 14 Singh (10.1002/humu.22360-BIB0014|humu22360-cit-0014) 2013; 17 Schweizer (10.1002/humu.22360-BIB0012|humu22360-cit-0012) 2003; 4 Hobbs (10.1002/humu.22360-BIB0005|humu22360-cit-0005) 1992; 1 Ji (10.1002/humu.22360-BIB0006|humu22360-cit-0006) 2008; 40 Keramati (10.1002/humu.22360-BIB0008|humu22360-cit-0008) 2011; 108 Cheng (10.1002/humu.22360-BIB0002|humu22360-cit-0002) 2011; 18 Liu (10.1002/humu.22360-BIB0009|humu22360-cit-0009) 2008; 103 Sladek (10.1002/humu.22360-BIB0015|humu22360-cit-0015) 2007; 445 Berendsen (10.1002/humu.22360-BIB0001|humu22360-cit-0001) 2011; 108 Mani (10.1002/humu.22360-BIB0011|humu22360-cit-0011) 2007; 315 Liu (10.1002/humu.22360-BIB0010|humu22360-cit-0010) 2012; 287 Ye (10.1002/humu.22360-BIB0017|humu22360-cit-0017) 2012; 287 Scott (10.1002/humu.22360-BIB0013|humu22360-cit-0013) 2007; 316 Cohen (10.1002/humu.22360-BIB0003|humu22360-cit-0003) 2004; 305 Kanazawa (10.1002/humu.22360-BIB0007|humu22360-cit-0007) 2004; 75 Go (10.1002/humu.22360-BIB0004|humu22360-cit-0004) 2012; 85 22232553 - J Biol Chem. 2012 Mar 2;287(10):7213-23 21245321 - Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):1914-8 21969569 - Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):17022-7 17332414 - Science. 2007 Mar 2;315(5816):1278-82 23395167 - Cell Metab. 2013 Feb 5;17(2):197-209 17463248 - Science. 2007 Jun 1;316(5829):1341-5 9891778 - Annu Rev Cell Dev Biol. 1998;14:59-88 18948618 - Circ Res. 2008 Nov 21;103(11):1280-8 15386214 - Am J Hum Genet. 2004 Nov;75(5):832-43 21984209 - Nat Struct Mol Biol. 2011 Nov;18(11):1204-10 1301956 - Hum Mutat. 1992;1(6):445-66 18391953 - Nat Genet. 2008 May;40(5):592-9 17293876 - Nature. 2007 Feb 22;445(7130):881-5 12729465 - BMC Cell Biol. 2003 May 2;4:4 22128165 - J Biol Chem. 2012 Jan 6;287(2):1335-44 22461740 - Yale J Biol Med. 2012 Mar;85(1):19-28 15297675 - Science. 2004 Aug 6;305(5685):869-72 |
References_xml | – reference: Ji W, Foo JN, O'Roak BJ, Zhao H, Larson MG, Simon DB, Newton-Cheh C, State MW, Levy D, Lifton RP. 2008. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet 40(5):592-599. – reference: Mani A, Radhakrishnan J, Wang H, Mani M, Nelson-Williams C, Carew K, Mane S, Najmabadi H, Wu D, Lifton R. 2007. LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science 315(5816):1278-1282. – reference: Schweizer L, Varmus H. 2003. Wnt/Wingless signaling through beta-catenin requires the function of both LRP/Arrow and frizzled classes of receptors. BMC Cell Biol 4:4. – reference: Singh R, De Aguiar RB, Naik S, Mani S, Ostadsharif K, Wencker D, Sotoudeh M, Malekzadeh R, Sherwin RS, Mani A. 2013. LRP6 enhances glucose metabolism by promoting TCF7L2-dependent insulin receptor expression and IGF receptor stabilization in humans. Cell Metab 17(2):197-209. – reference: Kanazawa A, Tsukada S, Sekine A, Tsunoda T, Takahashi A, Kashiwagi A, Tanaka Y, Babazono T, Matsuda M, Kaku K, Iwamoto Y, Kawamori R, et al. 2004. Association of the gene encoding wingless-type mammary tumor virus integration-site family member 5B (WNT5B) with type 2 diabetes. Am J Hum Genet 75(5):832-843. – reference: Hobbs HH, Brown MS, Goldstein JL. 1992. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat 1(6):445-466. – reference: Scott L, Mohlke K, Bonnycastle L, Willer C, Li Y, Duren W, Erdos M, Stringham H, Chines P, Jackson A, Prokunina-Olsson L, Ding CJ, et al. 2007. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316(5829):1341-1345. – reference: Keramati AR, Singh R, Lin A, Faramarzi S, Ye ZJ, Mane S, Tellides G, Lifton RP, Mani A. 2011. Wild-type LRP6 inhibits, whereas atherosclerosis-linked LRP6R611C increases PDGF-dependent vascular smooth muscle cell proliferation. Proc Natl Acad Sci USA 108(5):1914-1918. – reference: Cheng Z, Biechele T, Wei Z, Morrone S, Moon RT, Wang L, Xu W. 2011. Crystal structures of the extracellular domain of LRP6 and its complex with DKK1. Nat Struct Mol Biol 18(11):1204-1210. – reference: Go GW, Mani A. 2012. Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J Biol Med 85(1):19-28. – reference: Wodarz A, Nusse R. 1998. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 14:59-88. – reference: Berendsen AD, Fisher LW, Kilts TM, Owens RT, Robey PG, Gutkind JS, Young MF. 2011. Modulation of canonical Wnt signaling by the extracellular matrix component biglycan. Proc Natl Acad Sci USA 108(41):17022-17027. – reference: Liu W, Mani S, Davis N, Sarrafzadegan N, Kavathas P, Mani A. 2008. Mutation in EGFP domain of LDL receptor-related protein 6 impairs cellular LDL clearance. Circ Res 103(11):1280-1288. – reference: Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R, Hobbs HH. 2004. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305(5685):869-872. – reference: Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S, Balkau B, Heude B, et al. 2007. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445(7130):881-885. – reference: Ye ZJ, Go GW, Singh R, Liu W, Keramati AR, Mani A. 2012. LRP6 protein regulates low density lipoprotein (LDL) receptor-mediated LDL uptake. J Biol Chem 287(2):1335-1344. – reference: Liu W, Singh R, Choi CS, Hui-Young L, Keramati AR, Samuel VT, Lifton RP, Shulman GI, Mani A. 2012. LDL Receptor Related Protein 6 (LRP6) regulates body fat and glucose homeostasis by modulating nutrient sensing pathways and mitochondrial energy expenditure. J Biol Chem 287(10):7213-7223. – volume: 75 start-page: 832 issue: 5 year: 2004 end-page: 843 article-title: Association of the gene encoding wingless‐type mammary tumor virus integration‐site family member 5B (WNT5B) with type 2 diabetes publication-title: Am J Hum Genet – volume: 4 start-page: 4 year: 2003 article-title: Wnt/Wingless signaling through beta‐catenin requires the function of both /Arrow and frizzled classes of receptors publication-title: BMC Cell Biol – volume: 316 start-page: 1341 issue: 5829 year: 2007 end-page: 1345 article-title: A genome‐wide association study of type 2 diabetes in Finns detects multiple susceptibility variants publication-title: Science – volume: 14 start-page: 59 year: 1998 end-page: 88 article-title: Mechanisms of Wnt signaling in development publication-title: Annu Rev Cell Dev Biol – volume: 17 start-page: 197 issue: 2 year: 2013 end-page: 209 article-title: LRP6 enhances glucose metabolism by promoting TCF7L2‐dependent insulin receptor expression and IGF receptor stabilization in humans publication-title: Cell Metab – volume: 18 start-page: 1204 issue: 11 year: 2011 end-page: 1210 article-title: Crystal structures of the extracellular domain of 6 and its complex with 1 publication-title: Nat Struct Mol Biol – volume: 85 start-page: 19 issue: 1 year: 2012 end-page: 28 article-title: Low‐density lipoprotein receptor ( ) family orchestrates cholesterol homeostasis publication-title: Yale J Biol Med – volume: 1 start-page: 445 issue: 6 year: 1992 end-page: 466 article-title: Molecular genetics of the receptor gene in familial hypercholesterolemia publication-title: Hum Mutat – volume: 108 start-page: 17022 issue: 41 year: 2011 end-page: 17027 article-title: Modulation of canonical nt signaling by the extracellular matrix component biglycan publication-title: Proc Natl Acad Sci USA – volume: 305 start-page: 869 issue: 5685 year: 2004 end-page: 872 article-title: Multiple rare alleles contribute to low plasma levels of cholesterol publication-title: Science – volume: 103 start-page: 1280 issue: 11 year: 2008 end-page: 1288 article-title: Mutation in domain of receptor‐related protein 6 impairs cellular clearance publication-title: Circ Res – volume: 445 start-page: 881 issue: 7130 year: 2007 end-page: 885 article-title: A genome‐wide association study identifies novel risk loci for type 2 diabetes publication-title: Nature – volume: 40 start-page: 592 issue: 5 year: 2008 end-page: 599 article-title: Rare independent mutations in renal salt handling genes contribute to blood pressure variation publication-title: Nat Genet – volume: 108 start-page: 1914 issue: 5 year: 2011 end-page: 1918 article-title: Wild‐type 6 inhibits, whereas atherosclerosis‐linked 6R611C increases ‐dependent vascular smooth muscle cell proliferation publication-title: Proc Natl Acad Sci USA – volume: 287 start-page: 1335 issue: 2 year: 2012 end-page: 1344 article-title: 6 protein regulates low density lipoprotein ( ) receptor‐mediated uptake publication-title: J Biol Chem – volume: 287 start-page: 7213 issue: 10 year: 2012 end-page: 7223 article-title: Receptor Related Protein 6 ( 6) regulates body fat and glucose homeostasis by modulating nutrient sensing pathways and mitochondrial energy expenditure publication-title: J Biol Chem – volume: 315 start-page: 1278 issue: 5816 year: 2007 end-page: 1282 article-title: 6 mutation in a family with early coronary disease and metabolic risk factors publication-title: Science – volume: 445 start-page: 881 issue: 7130 year: 2007 ident: 10.1002/humu.22360-BIB0015|humu22360-cit-0015 article-title: A genome-wide association study identifies novel risk loci for type 2 diabetes publication-title: Nature doi: 10.1038/nature05616 – volume: 108 start-page: 1914 issue: 5 year: 2011 ident: 10.1002/humu.22360-BIB0008|humu22360-cit-0008 article-title: Wild-type LRP6 inhibits, whereas atherosclerosis-linked LRP6R611C increases PDGF-dependent vascular smooth muscle cell proliferation publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1019443108 – volume: 287 start-page: 7213 issue: 10 year: 2012 ident: 10.1002/humu.22360-BIB0010|humu22360-cit-0010 article-title: LDL Receptor Related Protein 6 (LRP6) regulates body fat and glucose homeostasis by modulating nutrient sensing pathways and mitochondrial energy expenditure publication-title: J Biol Chem doi: 10.1074/jbc.M111.286724 – volume: 316 start-page: 1341 issue: 5829 year: 2007 ident: 10.1002/humu.22360-BIB0013|humu22360-cit-0013 article-title: A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants publication-title: Science doi: 10.1126/science.1142382 – volume: 17 start-page: 197 issue: 2 year: 2013 ident: 10.1002/humu.22360-BIB0014|humu22360-cit-0014 article-title: LRP6 enhances glucose metabolism by promoting TCF7L2-dependent insulin receptor expression and IGF receptor stabilization in humans publication-title: Cell Metab doi: 10.1016/j.cmet.2013.01.009 – volume: 14 start-page: 59 year: 1998 ident: 10.1002/humu.22360-BIB0016|humu22360-cit-0016 article-title: Mechanisms of Wnt signaling in development publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev.cellbio.14.1.59 – volume: 40 start-page: 592 issue: 5 year: 2008 ident: 10.1002/humu.22360-BIB0006|humu22360-cit-0006 article-title: Rare independent mutations in renal salt handling genes contribute to blood pressure variation publication-title: Nat Genet doi: 10.1038/ng.118 – volume: 75 start-page: 832 issue: 5 year: 2004 ident: 10.1002/humu.22360-BIB0007|humu22360-cit-0007 article-title: Association of the gene encoding wingless-type mammary tumor virus integration-site family member 5B (WNT5B) with type 2 diabetes publication-title: Am J Hum Genet doi: 10.1086/425340 – volume: 18 start-page: 1204 issue: 11 year: 2011 ident: 10.1002/humu.22360-BIB0002|humu22360-cit-0002 article-title: Crystal structures of the extracellular domain of LRP6 and its complex with DKK1 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2139 – volume: 305 start-page: 869 issue: 5685 year: 2004 ident: 10.1002/humu.22360-BIB0003|humu22360-cit-0003 article-title: Multiple rare alleles contribute to low plasma levels of HDL cholesterol publication-title: Science doi: 10.1126/science.1099870 – volume: 1 start-page: 445 issue: 6 year: 1992 ident: 10.1002/humu.22360-BIB0005|humu22360-cit-0005 article-title: Molecular genetics of the LDL receptor gene in familial hypercholesterolemia publication-title: Hum Mutat doi: 10.1002/humu.1380010602 – volume: 103 start-page: 1280 issue: 11 year: 2008 ident: 10.1002/humu.22360-BIB0009|humu22360-cit-0009 article-title: Mutation in EGFP domain of LDL receptor-related protein 6 impairs cellular LDL clearance publication-title: Circ Res doi: 10.1161/CIRCRESAHA.108.183863 – volume: 315 start-page: 1278 issue: 5816 year: 2007 ident: 10.1002/humu.22360-BIB0011|humu22360-cit-0011 article-title: LRP6 mutation in a family with early coronary disease and metabolic risk factors publication-title: Science doi: 10.1126/science.1136370 – volume: 108 start-page: 17022 issue: 41 year: 2011 ident: 10.1002/humu.22360-BIB0001|humu22360-cit-0001 article-title: Modulation of canonical Wnt signaling by the extracellular matrix component biglycan publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1110629108 – volume: 4 start-page: 4 year: 2003 ident: 10.1002/humu.22360-BIB0012|humu22360-cit-0012 article-title: Wnt/Wingless signaling through beta-catenin requires the function of both LRP/Arrow and frizzled classes of receptors publication-title: BMC Cell Biol doi: 10.1186/1471-2121-4-4 – volume: 85 start-page: 19 issue: 1 year: 2012 ident: 10.1002/humu.22360-BIB0004|humu22360-cit-0004 article-title: Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis publication-title: Yale J Biol Med – volume: 287 start-page: 1335 issue: 2 year: 2012 ident: 10.1002/humu.22360-BIB0017|humu22360-cit-0017 article-title: LRP6 protein regulates low density lipoprotein (LDL) receptor-mediated LDL uptake publication-title: J Biol Chem doi: 10.1074/jbc.M111.295287 – reference: 17293876 - Nature. 2007 Feb 22;445(7130):881-5 – reference: 9891778 - Annu Rev Cell Dev Biol. 1998;14:59-88 – reference: 23395167 - Cell Metab. 2013 Feb 5;17(2):197-209 – reference: 15386214 - Am J Hum Genet. 2004 Nov;75(5):832-43 – reference: 17332414 - Science. 2007 Mar 2;315(5816):1278-82 – reference: 18948618 - Circ Res. 2008 Nov 21;103(11):1280-8 – reference: 21969569 - Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):17022-7 – reference: 22461740 - Yale J Biol Med. 2012 Mar;85(1):19-28 – reference: 18391953 - Nat Genet. 2008 May;40(5):592-9 – reference: 22232553 - J Biol Chem. 2012 Mar 2;287(10):7213-23 – reference: 17463248 - Science. 2007 Jun 1;316(5829):1341-5 – reference: 12729465 - BMC Cell Biol. 2003 May 2;4:4 – reference: 21984209 - Nat Struct Mol Biol. 2011 Nov;18(11):1204-10 – reference: 22128165 - J Biol Chem. 2012 Jan 6;287(2):1335-44 – reference: 15297675 - Science. 2004 Aug 6;305(5685):869-72 – reference: 1301956 - Hum Mutat. 1992;1(6):445-66 – reference: 21245321 - Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):1914-8 |
SSID | ssj0008553 |
Score | 2.3612008 |
Snippet | ABSTRACT
A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The... A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The... A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1221 |
SubjectTerms | Adult Aged Cardiovascular disease Case-Control Studies coronary artery disease Coronary Disease - complications Coronary Disease - genetics Coronary Disease - metabolism Europe Female Genetic Predisposition to Disease Genetic Variation Glycosylation Humans Low Density Lipoprotein Receptor-Related Protein-6 - genetics Low Density Lipoprotein Receptor-Related Protein-6 - metabolism LRP6 Male Metabolic syndrome Metabolic Syndrome - genetics Metabolic Syndrome - metabolism Middle Aged Mutation Pedigree Phylogeny Sequence Alignment United States Wnt Proteins - metabolism Young Adult |
Title | Rare Nonconservative LRP6 Mutations Are Associated with Metabolic Syndrome |
URI | https://api.istex.fr/ark:/67375/WNG-P384RBP1-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhumu.22360 https://www.ncbi.nlm.nih.gov/pubmed/23703864 https://www.proquest.com/docview/1760164490 https://www.proquest.com/docview/1426003972 https://www.proquest.com/docview/1540223620 https://pubmed.ncbi.nlm.nih.gov/PMC3745535 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB-OE8UXP86vnqdUFEGhe9smaVLwRcVzOeyyrC7ei4RpmnLHnd1jdyvqX28-2q6rx4G-FTIJ6WQm-SWZ_AbgWUyKIhY2v4tZfyILGaIsoyoalpmIq4pWcWYfCufjdDSjh0fsaAtedW9hPD9Ef-BmPcPN19bBsVjur0lDj5uvzcAsbqndsNtgLYuIpmvuKMGYj65nmYGQGe25SZP9ddWN1eiKVez3i6Dm3xGTvyNZtxQd3IQv3U_4CJTTQbMqBurnH_yO__uXt-BGi1HD196obsOWrnfgqs9a-WMHruXtffwdOJziQofjea1sULY73v2mww_TSRrmjb_kX5p2dNhZgS5De_Ib5nplrO_sRIUfW8qEuzA7ePfp7ShqszNEigoyjBSSNK3KJNYlIlEaeYrDUiuOidJZhQx5gii03QJTgYQaoCW0IKixMvUYuQfb9bzWDyCkHLWpWMW8RJrRCgkXqRoygZrQgvEAXnSjJFVLXW4zaJxJT7qcSKsm6dQUwNNe9twTdlwo9dwNdi-Ci1Mb4saZ_Dx-LydE0OmbSSzjAPY6a5Ctdy9lzB0PG81MO0_6YuOX9rIFaz1vjIyj_jdoL7lExsBl253EtHPfG1jfoYSYuVikNAC-YXq9gOUF3yypT44dP7jRt7F9FsBLZ1mXqEGOZvnMfe3-i_BDuJ64rCA21G4PtleLRj8y2GxVPHY--AvpuDWz |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELfQJh5feIzHwgYEgZBAStfEdux85DXKaKqqrNq-WRfH0aZtKWobNPbXz-ekKYVpEnyL5LPlnO_sn-3z7wh5HdIsCyXmd7HrT4CQIUgSpoNunsiwKFgRJvhQOB3EvTHbO-SHTWwOvoWp-SHaAzf0DDdfo4PjgfTOkjX0qDqrOnZ1i-2OfR1TemMCg0-jJXuU5LyOr-eJBZEJa9lJo51l3ZX1aB1Ve34V2Pw7ZvJ3LOsWo917dcbVmeMwxBiUk041zzr64g-Gx__-z_vkbgNT_fe1XT0gN0y5QW7WiSt_bZBbaXMl_5DsjWBq_MGk1BiX7U54fxq_PxrGflrV9_wz247xF4Zgch8Pf_3UzK0Bnh5r_3vDmvCIjHc_73_sBU2ChkAzSbuBBhrHRR6FJgeg2oCIoZsbLSDSJimAg4gApMFdMJNAmcVa0kgKBgpbj9PHZK2clGaT-EyAsRWLUOTAElYAFTLWXS7BUJZx4ZG3i2FSumEvxyQap6rmXY4Uqkk5NXnkVSv7o-bsuFLqjRvtVgSmJxjlJrg6GHxRQyrZ6MMwVKFHthfmoBoHn6lQOCo2lth2XrbF1jXxvgVKM6msjGP_t4AvukbGImbsTmTbeVJbWNuhiNrpWMbMI2LF9loBpAZfLSmPjxxFuNW3NX7ukXfOtK5Rg-qN07H7evovwi_I7d5-2lf9r4NvW-RO5JKEYOTdNlmbTyvzzEK1efbcOeQlFk85zQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemTUy8MBhfGQOCQEggpWtiO3YkXvgqZSxVVajYC7IujqNNG-nUNQj46zk7H6UwTYK3SD5bzvnO_tk-_46QJyHNslDa_C64_gQWMgRJwnTQzxMZFgUrwsQ-FE5H8XDK9g_54Rp50b6FqfkhugM36xluvrYOfpYXe0vS0KPqa9XDxS3GDfsGi9FbLCSaLMmjJOd1eD1PEEMmrCMnjfaWdVeWow2r2e8XYc2_QyZ_h7JuLRpskS_tX9QhKCe9apH19M8_CB7_9zevk2sNSPVf1lZ1g6yZcptcqdNW_tgmm2lzIX-T7E9gbvzRrNQ2Ktud734z_sFkHPtpVd_yn2M7xm_NwOS-Pfr1U7NA8zs91v7HhjPhFpkO3n56PQya9AyBZpL2Aw00jos8Ck0OQLUBEUM_N1pApE1SAAcRAUhj98BMAmWItKSRFAwUWI_T22S9nJXmLvGZAIMVi1DkwBJWABUy1n0uwVCWceGRZ-0oKd1wl9sUGqeqZl2OlFWTcmryyONO9qxm7LhQ6qkb7E4E5ic2xk1w9Xn0To2pZJNX41CFHtltrUE17n2uQuGI2FiC7TzqitEx7W0LlGZWoYzj_ke4F10ig3jZdifCdu7UBtZ1KKI4GcuYeUSsmF4nYInBV0vK4yNHEI76RtvnHnnuLOsSNajhNJ26r51_EX5INsdvBurg_ejDPXI1chlCbNjdLllfzCtzH3HaInvg3PEXZB04hQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rare+Nonconservative+LRP6+Mutations+Are+Associated+with+Metabolic+Syndrome&rft.jtitle=Human+mutation&rft.au=Singh%2C+Rajvir&rft.au=Smith%2C+Emily&rft.au=Fathzadeh%2C+Mohsen&rft.au=Liu%2C+Wenzhong&rft.date=2013-09-01&rft.issn=1059-7794&rft.eissn=1098-1004&rft.volume=34&rft.issue=9&rft.spage=1221&rft.epage=1225&rft_id=info:doi/10.1002%2Fhumu.22360&rft.externalDBID=10.1002%252Fhumu.22360&rft.externalDocID=HUMU22360 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-7794&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-7794&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-7794&client=summon |