Rare Nonconservative LRP6 Mutations Are Associated with Metabolic Syndrome

ABSTRACT A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The prevalence and spectrum of LRP6 mutations in the disease population of the United States is not known. Two hundred white Americans with early...

Full description

Saved in:
Bibliographic Details
Published inHuman mutation Vol. 34; no. 9; pp. 1221 - 1225
Main Authors Singh, Rajvir, Smith, Emily, Fathzadeh, Mohsen, Liu, Wenzhong, Go, Gwang-Woong, Subrahmanyan, Lakshman, Faramarzi, Saeed, McKenna, William, Mani, Arya
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.09.2013
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1059-7794
1098-1004
1098-1004
DOI10.1002/humu.22360

Cover

Loading…
Abstract ABSTRACT A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The prevalence and spectrum of LRP6 mutations in the disease population of the United States is not known. Two hundred white Americans with early onset familial CAD and metabolic syndrome and 2,000 healthy Northern European controls were screened for nonconservative mutations in LRP6. Three novel mutations were identified, which cosegregated with the metabolic traits in the kindreds of the affected subjects and none in the controls. All three mutations reside in the second propeller domain, which plays a critical role in ligand binding. Two of the mutations substituted highly conserved arginines in the second YWTD domain and the third substituted a conserved glycosylation site. The functional characterization of one of the variants showed that it impairs Wnt signaling and acts as a loss of function mutation. LRP6 is a member of LDL receptor family of proteins, which is widely known for its diverse functions as a coreceptor for the Wnt family of proteins during embryonic development. Recent studies have shown its involvement in regulation of vascular integrity, blood pressure, plasmaglucose and lipids and bone mineralization in adult life.
AbstractList A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The prevalence and spectrum of LRP6 mutations in the disease population of the United States is not known. Two hundred white Americans with early onset familial CAD and metabolic syndrome and 2,000 healthy Northern European controls were screened for nonconservative mutations in LRP6. Three novel mutations were identified, which cosegregated with the metabolic traits in the kindreds of the affected subjects and none in the controls. All three mutations reside in the second propeller domain, which plays a critical role in ligand binding. Two of the mutations substituted highly conserved arginines in the second YWTD domain and the third substituted a conserved glycosylation site. The functional characterization of one of the variants showed that it impairs Wnt signaling and acts as a loss of function mutation. LRP6 is a member of LDL receptor family of proteins, which is widely known for its diverse functions as a coreceptor for the Wnt family of proteins during embryonic development. Recent studies have shown its involvement in regulation of vascular integrity, blood pressure, plasmaglucose and lipids and bone mineralization in adult life.
A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The prevalence and spectrum of LRP6 mutations in the disease population of the United States is not known. Two hundred white Americans with early onset familial CAD and metabolic syndrome and 2,000 healthy Northern European controls were screened for nonconservative mutations in LRP6. Three novel mutations were identified, which cosegregated with the metabolic traits in the kindreds of the affected subjects and none in the controls. All three mutations reside in the second propeller domain, which plays a critical role in ligand binding. Two of the mutations substituted highly conserved arginines in the second YWTD domain and the third substituted a conserved glycosylation site. The functional characterization of one of the variants showed that it impairs Wnt signaling and acts as a loss of function mutation.
A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The prevalence and spectrum of LRP6 mutations in the disease population of the United States is not known. Two hundred white Americans with early onset familial CAD and metabolic syndrome and 2,000 healthy Northern European controls were screened for nonconservative mutations in LRP6. Three novel mutations were identified, which cosegregated with the metabolic traits in the kindreds of the affected subjects and none in the controls. All three mutations reside in the second propeller domain, which plays a critical role in ligand binding. Two of the mutations substituted highly conserved arginines in the second YWTD domain and the third substituted a conserved glycosylation site. The functional characterization of one of the variants showed that it impairs Wnt signaling and acts as a loss of function mutation.A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The prevalence and spectrum of LRP6 mutations in the disease population of the United States is not known. Two hundred white Americans with early onset familial CAD and metabolic syndrome and 2,000 healthy Northern European controls were screened for nonconservative mutations in LRP6. Three novel mutations were identified, which cosegregated with the metabolic traits in the kindreds of the affected subjects and none in the controls. All three mutations reside in the second propeller domain, which plays a critical role in ligand binding. Two of the mutations substituted highly conserved arginines in the second YWTD domain and the third substituted a conserved glycosylation site. The functional characterization of one of the variants showed that it impairs Wnt signaling and acts as a loss of function mutation.
A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The prevalence and spectrum of LRP6 mutations in the disease population of the United States is not known. Two hundred white Americans with early onset familial CAD and metabolic syndrome and 2000 healthy Northern European controls were screened for nonconservative mutations in LRP6 . Three novel mutations were identified, which co-segregated with the metabolic traits in the kindreds of the affected subjects and none in the controls. All three mutations reside in the second propeller domain, which plays a critical role in ligand binding. Two of the mutations substituted highly conserved arginines in the second YWTD domain and the third substituted a conserved glycosylation site. The functional characterization of one of the variants showed that it impairs Wnt signaling and acts as a loss of function mutation.
ABSTRACT A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The prevalence and spectrum of LRP6 mutations in the disease population of the United States is not known. Two hundred white Americans with early onset familial CAD and metabolic syndrome and 2,000 healthy Northern European controls were screened for nonconservative mutations in LRP6. Three novel mutations were identified, which cosegregated with the metabolic traits in the kindreds of the affected subjects and none in the controls. All three mutations reside in the second propeller domain, which plays a critical role in ligand binding. Two of the mutations substituted highly conserved arginines in the second YWTD domain and the third substituted a conserved glycosylation site. The functional characterization of one of the variants showed that it impairs Wnt signaling and acts as a loss of function mutation. LRP6 is a member of LDL receptor family of proteins, which is widely known for its diverse functions as a coreceptor for the Wnt family of proteins during embryonic development. Recent studies have shown its involvement in regulation of vascular integrity, blood pressure, plasmaglucose and lipids and bone mineralization in adult life.
Author Mani, Arya
Fathzadeh, Mohsen
Subrahmanyan, Lakshman
McKenna, William
Singh, Rajvir
Smith, Emily
Liu, Wenzhong
Go, Gwang-Woong
Faramarzi, Saeed
AuthorAffiliation 1 Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
3 Institute of Cardiovascular Science, University College London, London, UK
2 Department of Genetics, Yale University School of Medicine, New Haven, CT
AuthorAffiliation_xml – name: 2 Department of Genetics, Yale University School of Medicine, New Haven, CT
– name: 3 Institute of Cardiovascular Science, University College London, London, UK
– name: 1 Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
Author_xml – sequence: 1
  givenname: Rajvir
  surname: Singh
  fullname: Singh, Rajvir
  organization: Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, Connecticut, New Haven
– sequence: 2
  givenname: Emily
  surname: Smith
  fullname: Smith, Emily
  organization: Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, Connecticut, New Haven
– sequence: 3
  givenname: Mohsen
  surname: Fathzadeh
  fullname: Fathzadeh, Mohsen
  organization: Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, Connecticut, New Haven
– sequence: 4
  givenname: Wenzhong
  surname: Liu
  fullname: Liu, Wenzhong
  organization: Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, Connecticut, New Haven
– sequence: 5
  givenname: Gwang-Woong
  surname: Go
  fullname: Go, Gwang-Woong
  organization: Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, Connecticut, New Haven
– sequence: 6
  givenname: Lakshman
  surname: Subrahmanyan
  fullname: Subrahmanyan, Lakshman
  organization: Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, Connecticut, New Haven
– sequence: 7
  givenname: Saeed
  surname: Faramarzi
  fullname: Faramarzi, Saeed
  organization: Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, Connecticut, New Haven
– sequence: 8
  givenname: William
  surname: McKenna
  fullname: McKenna, William
  organization: Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
– sequence: 9
  givenname: Arya
  surname: Mani
  fullname: Mani, Arya
  email: Arya.mani@yale.edu
  organization: Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23703864$$D View this record in MEDLINE/PubMed
BookMark eNqFkVtv1DAQhSPUil7ghR-AIvGCkFJ8i528IC0VtEW7ZbWw4tGaOhPWJRsXO9my_x6HdCuoEDzZHn_naGbOUbLXuhaT5BklJ5QQ9nrVr_sTxrgkj5JDSsoii2WxN9zzMlOqFAfJUQjXhJAiz_nj5IBxRXghxWHyYQEe00vXGtcG9Bvo7AbT6WIu01nfxVcsp5OITEJwxkKHVXpru1U6ww6uXGNN-mnbVt6t8UmyX0MT8OndeZws37_7fHqeTT-eXZxOppkRBSeZAS5lXTGKFQA3CEoCqdAoYAbLGnJQDKBAXnAlCuBCMl5gwQGhjrqcHydvRt-b_mqNlcG289DoG2_X4LfagdV__rR2pb-6jY5-cfzB4OWdgXffewydXttgsGmgRdcHTXNBhnUy8n9UMEkILxWL6IsH6LXrfRs3oamShEohysHw-e_N33e9SyQCZASMdyF4rLWxYw5xFttoSvQQuh5C179Cj5JXDyQ717_CdIRvbYPbf5D6fDlb7jTZqLGhwx_3GvDftFRc5frL5Zme80Is3s6ppvwnXy_MYg
CitedBy_id crossref_primary_10_1007_s11883_024_01200_y
crossref_primary_10_1002_mgg3_2045
crossref_primary_10_1016_j_ajhg_2018_01_015
crossref_primary_10_1007_s00018_024_05220_4
crossref_primary_10_1016_j_bone_2019_05_003
crossref_primary_10_1007_s00439_020_02124_8
crossref_primary_10_1007_s11596_022_2683_4
crossref_primary_10_1016_j_cmet_2013_11_023
crossref_primary_10_1016_j_gendis_2023_04_042
crossref_primary_10_1016_j_atherosclerosis_2017_06_001
crossref_primary_10_1016_j_carpath_2014_12_002
crossref_primary_10_1016_j_pneurobio_2014_07_004
crossref_primary_10_1007_s00056_021_00284_4
crossref_primary_10_1007_s12035_019_01700_y
crossref_primary_10_1164_rccm_201401_0079OC
crossref_primary_10_1038_boneres_2014_6
crossref_primary_10_1177_0022034520970459
crossref_primary_10_3389_fcell_2021_714330
crossref_primary_10_1016_j_molmet_2024_101905
crossref_primary_10_1242_dmm_025320
crossref_primary_10_1016_j_ajhg_2015_08_014
crossref_primary_10_1530_EC_21_0203
crossref_primary_10_1096_fj_15_271171
crossref_primary_10_1002_advs_202004993
crossref_primary_10_1038_tpj_2017_28
crossref_primary_10_1016_j_nutres_2018_06_009
crossref_primary_10_1016_j_atherosclerosis_2017_05_001
crossref_primary_10_1016_j_cmet_2015_01_009
crossref_primary_10_1093_cvr_cvz338
crossref_primary_10_1038_s41598_020_61869_4
crossref_primary_10_1016_j_cjca_2019_05_021
crossref_primary_10_1016_j_jbc_2024_108057
crossref_primary_10_3390_ijms241411786
crossref_primary_10_1161_CIRCRESAHA_118_314521
crossref_primary_10_2337_db15_0822
crossref_primary_10_1016_j_ydbio_2014_09_010
crossref_primary_10_1210_er_2015_1146
crossref_primary_10_1002_jgm_3245
crossref_primary_10_1016_j_atherosclerosis_2020_03_024
crossref_primary_10_1111_ahg_12254
crossref_primary_10_1016_j_molmet_2020_101078
crossref_primary_10_1111_cge_14491
crossref_primary_10_3390_nu7064453
crossref_primary_10_2337_dbi20_0015
crossref_primary_10_3389_fgene_2021_688241
crossref_primary_10_1002_jbm4_10717
crossref_primary_10_1016_j_molmet_2020_100992
crossref_primary_10_1097_MOL_0000000000000276
crossref_primary_10_1515_jbcpp_2021_0291
crossref_primary_10_1038_s41392_022_00955_7
crossref_primary_10_1111_ene_12735
crossref_primary_10_1155_2022_7542468
crossref_primary_10_1098_rsob_200128
crossref_primary_10_1016_j_ejphar_2015_03_093
crossref_primary_10_3390_ijms17071173
crossref_primary_10_1038_s41413_018_0023_x
crossref_primary_10_1016_j_celrep_2015_09_028
crossref_primary_10_1080_21690707_2016_1255295
Cites_doi 10.1038/nature05616
10.1073/pnas.1019443108
10.1074/jbc.M111.286724
10.1126/science.1142382
10.1016/j.cmet.2013.01.009
10.1146/annurev.cellbio.14.1.59
10.1038/ng.118
10.1086/425340
10.1038/nsmb.2139
10.1126/science.1099870
10.1002/humu.1380010602
10.1161/CIRCRESAHA.108.183863
10.1126/science.1136370
10.1073/pnas.1110629108
10.1186/1471-2121-4-4
10.1074/jbc.M111.295287
ContentType Journal Article
Copyright 2013 WILEY PERIODICALS, INC.
Copyright © 2013 Wiley Periodicals, Inc.
Copyright_xml – notice: 2013 WILEY PERIODICALS, INC.
– notice: Copyright © 2013 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
8FD
FR3
K9.
P64
RC3
7X8
5PM
DOI 10.1002/humu.22360
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
MEDLINE
MEDLINE - Academic


Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1098-1004
EndPage 1225
ExternalDocumentID PMC3745535
3933255221
23703864
10_1002_humu_22360
HUMU22360
ark_67375_WNG_P384RBP1_1
Genre shortCommunication
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: 1R01HL094574; 5R01HL094784
– fundername: NHLBI NIH HHS
  grantid: R01 HL094574
– fundername: NHLBI NIH HHS
  grantid: R01 HL094784
– fundername: NHLBI NIH HHS
  grantid: 5R01HL094784
– fundername: NHLBI NIH HHS
  grantid: 1R01HL094574
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: R01 HL094784 || HL
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: R01 HL094574 || HL
GroupedDBID ---
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
29I
31~
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88A
88E
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BVXVI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DVXWH
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GNP
GODZA
H.T
H.X
H13
HBH
HCIFZ
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0L
M1P
M66
M7P
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
PROAC
PSQYO
Q.N
Q11
Q2X
QB0
QRW
R.K
RHX
RIWAO
RJQFR
ROL
RWI
RWV
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UDS
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WTM
WXSBR
WYISQ
X7M
XG1
XSW
XV2
ZZTAW
~IA
~KM
~WT
AANHP
ACCMX
ACRPL
ACYXJ
ADNMO
AAYXX
AGQPQ
CITATION
PHGZM
PHGZT
RPM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QP
7TK
8FD
FR3
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c4830-ca366fd21edaa3cea76a0dec7a2ce9fa5a72aa8e383748a346238e83aeaf6fd53
IEDL.DBID DR2
ISSN 1059-7794
1098-1004
IngestDate Thu Aug 21 13:41:59 EDT 2025
Fri Jul 11 03:40:34 EDT 2025
Fri Jul 11 10:52:45 EDT 2025
Fri Jul 25 19:43:31 EDT 2025
Mon Jul 21 05:55:34 EDT 2025
Thu Apr 24 22:51:54 EDT 2025
Tue Jul 01 04:33:46 EDT 2025
Wed Jan 22 16:21:28 EST 2025
Wed Oct 30 09:51:37 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords coronary artery disease
metabolic syndrome
mutation
LRP6
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
2013 WILEY PERIODICALS, INC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4830-ca366fd21edaa3cea76a0dec7a2ce9fa5a72aa8e383748a346238e83aeaf6fd53
Notes ark:/67375/WNG-P384RBP1-1
ArticleID:HUMU22360
istex:5143B873A97EEAC215B8B9687CFDC5C6D38FDC60
NIH - No. 1R01HL094574; No. 5R01HL094784
Contract Grant Sponsor: NIH (1R01HL094574, 5R01HL094784).
These authors contributed equally to this work.
Communicated by Elizabeth F. Neufeld
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 23703864
PQID 1760164490
PQPubID 30498
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3745535
proquest_miscellaneous_1540223620
proquest_miscellaneous_1426003972
proquest_journals_1760164490
pubmed_primary_23703864
crossref_citationtrail_10_1002_humu_22360
crossref_primary_10_1002_humu_22360
wiley_primary_10_1002_humu_22360_HUMU22360
istex_primary_ark_67375_WNG_P384RBP1_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2013
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: September 2013
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Human mutation
PublicationTitleAlternate Human Mutation
PublicationYear 2013
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References Berendsen AD, Fisher LW, Kilts TM, Owens RT, Robey PG, Gutkind JS, Young MF. 2011. Modulation of canonical Wnt signaling by the extracellular matrix component biglycan. Proc Natl Acad Sci USA 108(41):17022-17027.
Mani A, Radhakrishnan J, Wang H, Mani M, Nelson-Williams C, Carew K, Mane S, Najmabadi H, Wu D, Lifton R. 2007. LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science 315(5816):1278-1282.
Scott L, Mohlke K, Bonnycastle L, Willer C, Li Y, Duren W, Erdos M, Stringham H, Chines P, Jackson A, Prokunina-Olsson L, Ding CJ, et al. 2007. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316(5829):1341-1345.
Kanazawa A, Tsukada S, Sekine A, Tsunoda T, Takahashi A, Kashiwagi A, Tanaka Y, Babazono T, Matsuda M, Kaku K, Iwamoto Y, Kawamori R, et al. 2004. Association of the gene encoding wingless-type mammary tumor virus integration-site family member 5B (WNT5B) with type 2 diabetes. Am J Hum Genet 75(5):832-843.
Ye ZJ, Go GW, Singh R, Liu W, Keramati AR, Mani A. 2012. LRP6 protein regulates low density lipoprotein (LDL) receptor-mediated LDL uptake. J Biol Chem 287(2):1335-1344.
Schweizer L, Varmus H. 2003. Wnt/Wingless signaling through beta-catenin requires the function of both LRP/Arrow and frizzled classes of receptors. BMC Cell Biol 4:4.
Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S, Balkau B, Heude B, et al. 2007. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445(7130):881-885.
Ji W, Foo JN, O'Roak BJ, Zhao H, Larson MG, Simon DB, Newton-Cheh C, State MW, Levy D, Lifton RP. 2008. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet 40(5):592-599.
Keramati AR, Singh R, Lin A, Faramarzi S, Ye ZJ, Mane S, Tellides G, Lifton RP, Mani A. 2011. Wild-type LRP6 inhibits, whereas atherosclerosis-linked LRP6R611C increases PDGF-dependent vascular smooth muscle cell proliferation. Proc Natl Acad Sci USA 108(5):1914-1918.
Liu W, Mani S, Davis N, Sarrafzadegan N, Kavathas P, Mani A. 2008. Mutation in EGFP domain of LDL receptor-related protein 6 impairs cellular LDL clearance. Circ Res 103(11):1280-1288.
Wodarz A, Nusse R. 1998. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 14:59-88.
Singh R, De Aguiar RB, Naik S, Mani S, Ostadsharif K, Wencker D, Sotoudeh M, Malekzadeh R, Sherwin RS, Mani A. 2013. LRP6 enhances glucose metabolism by promoting TCF7L2-dependent insulin receptor expression and IGF receptor stabilization in humans. Cell Metab 17(2):197-209.
Go GW, Mani A. 2012. Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J Biol Med 85(1):19-28.
Cheng Z, Biechele T, Wei Z, Morrone S, Moon RT, Wang L, Xu W. 2011. Crystal structures of the extracellular domain of LRP6 and its complex with DKK1. Nat Struct Mol Biol 18(11):1204-1210.
Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R, Hobbs HH. 2004. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305(5685):869-872.
Hobbs HH, Brown MS, Goldstein JL. 1992. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat 1(6):445-466.
Liu W, Singh R, Choi CS, Hui-Young L, Keramati AR, Samuel VT, Lifton RP, Shulman GI, Mani A. 2012. LDL Receptor Related Protein 6 (LRP6) regulates body fat and glucose homeostasis by modulating nutrient sensing pathways and mitochondrial energy expenditure. J Biol Chem 287(10):7213-7223.
2007; 445
2004; 75
2007; 316
2011; 108
2012; 287
2013; 17
2007; 315
2003; 4
2008; 103
2008; 40
2004; 305
2011; 18
1992; 1
2012; 85
1998; 14
Wodarz (10.1002/humu.22360-BIB0016|humu22360-cit-0016) 1998; 14
Singh (10.1002/humu.22360-BIB0014|humu22360-cit-0014) 2013; 17
Schweizer (10.1002/humu.22360-BIB0012|humu22360-cit-0012) 2003; 4
Hobbs (10.1002/humu.22360-BIB0005|humu22360-cit-0005) 1992; 1
Ji (10.1002/humu.22360-BIB0006|humu22360-cit-0006) 2008; 40
Keramati (10.1002/humu.22360-BIB0008|humu22360-cit-0008) 2011; 108
Cheng (10.1002/humu.22360-BIB0002|humu22360-cit-0002) 2011; 18
Liu (10.1002/humu.22360-BIB0009|humu22360-cit-0009) 2008; 103
Sladek (10.1002/humu.22360-BIB0015|humu22360-cit-0015) 2007; 445
Berendsen (10.1002/humu.22360-BIB0001|humu22360-cit-0001) 2011; 108
Mani (10.1002/humu.22360-BIB0011|humu22360-cit-0011) 2007; 315
Liu (10.1002/humu.22360-BIB0010|humu22360-cit-0010) 2012; 287
Ye (10.1002/humu.22360-BIB0017|humu22360-cit-0017) 2012; 287
Scott (10.1002/humu.22360-BIB0013|humu22360-cit-0013) 2007; 316
Cohen (10.1002/humu.22360-BIB0003|humu22360-cit-0003) 2004; 305
Kanazawa (10.1002/humu.22360-BIB0007|humu22360-cit-0007) 2004; 75
Go (10.1002/humu.22360-BIB0004|humu22360-cit-0004) 2012; 85
22232553 - J Biol Chem. 2012 Mar 2;287(10):7213-23
21245321 - Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):1914-8
21969569 - Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):17022-7
17332414 - Science. 2007 Mar 2;315(5816):1278-82
23395167 - Cell Metab. 2013 Feb 5;17(2):197-209
17463248 - Science. 2007 Jun 1;316(5829):1341-5
9891778 - Annu Rev Cell Dev Biol. 1998;14:59-88
18948618 - Circ Res. 2008 Nov 21;103(11):1280-8
15386214 - Am J Hum Genet. 2004 Nov;75(5):832-43
21984209 - Nat Struct Mol Biol. 2011 Nov;18(11):1204-10
1301956 - Hum Mutat. 1992;1(6):445-66
18391953 - Nat Genet. 2008 May;40(5):592-9
17293876 - Nature. 2007 Feb 22;445(7130):881-5
12729465 - BMC Cell Biol. 2003 May 2;4:4
22128165 - J Biol Chem. 2012 Jan 6;287(2):1335-44
22461740 - Yale J Biol Med. 2012 Mar;85(1):19-28
15297675 - Science. 2004 Aug 6;305(5685):869-72
References_xml – reference: Ji W, Foo JN, O'Roak BJ, Zhao H, Larson MG, Simon DB, Newton-Cheh C, State MW, Levy D, Lifton RP. 2008. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet 40(5):592-599.
– reference: Mani A, Radhakrishnan J, Wang H, Mani M, Nelson-Williams C, Carew K, Mane S, Najmabadi H, Wu D, Lifton R. 2007. LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science 315(5816):1278-1282.
– reference: Schweizer L, Varmus H. 2003. Wnt/Wingless signaling through beta-catenin requires the function of both LRP/Arrow and frizzled classes of receptors. BMC Cell Biol 4:4.
– reference: Singh R, De Aguiar RB, Naik S, Mani S, Ostadsharif K, Wencker D, Sotoudeh M, Malekzadeh R, Sherwin RS, Mani A. 2013. LRP6 enhances glucose metabolism by promoting TCF7L2-dependent insulin receptor expression and IGF receptor stabilization in humans. Cell Metab 17(2):197-209.
– reference: Kanazawa A, Tsukada S, Sekine A, Tsunoda T, Takahashi A, Kashiwagi A, Tanaka Y, Babazono T, Matsuda M, Kaku K, Iwamoto Y, Kawamori R, et al. 2004. Association of the gene encoding wingless-type mammary tumor virus integration-site family member 5B (WNT5B) with type 2 diabetes. Am J Hum Genet 75(5):832-843.
– reference: Hobbs HH, Brown MS, Goldstein JL. 1992. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat 1(6):445-466.
– reference: Scott L, Mohlke K, Bonnycastle L, Willer C, Li Y, Duren W, Erdos M, Stringham H, Chines P, Jackson A, Prokunina-Olsson L, Ding CJ, et al. 2007. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316(5829):1341-1345.
– reference: Keramati AR, Singh R, Lin A, Faramarzi S, Ye ZJ, Mane S, Tellides G, Lifton RP, Mani A. 2011. Wild-type LRP6 inhibits, whereas atherosclerosis-linked LRP6R611C increases PDGF-dependent vascular smooth muscle cell proliferation. Proc Natl Acad Sci USA 108(5):1914-1918.
– reference: Cheng Z, Biechele T, Wei Z, Morrone S, Moon RT, Wang L, Xu W. 2011. Crystal structures of the extracellular domain of LRP6 and its complex with DKK1. Nat Struct Mol Biol 18(11):1204-1210.
– reference: Go GW, Mani A. 2012. Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J Biol Med 85(1):19-28.
– reference: Wodarz A, Nusse R. 1998. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 14:59-88.
– reference: Berendsen AD, Fisher LW, Kilts TM, Owens RT, Robey PG, Gutkind JS, Young MF. 2011. Modulation of canonical Wnt signaling by the extracellular matrix component biglycan. Proc Natl Acad Sci USA 108(41):17022-17027.
– reference: Liu W, Mani S, Davis N, Sarrafzadegan N, Kavathas P, Mani A. 2008. Mutation in EGFP domain of LDL receptor-related protein 6 impairs cellular LDL clearance. Circ Res 103(11):1280-1288.
– reference: Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R, Hobbs HH. 2004. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305(5685):869-872.
– reference: Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S, Balkau B, Heude B, et al. 2007. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445(7130):881-885.
– reference: Ye ZJ, Go GW, Singh R, Liu W, Keramati AR, Mani A. 2012. LRP6 protein regulates low density lipoprotein (LDL) receptor-mediated LDL uptake. J Biol Chem 287(2):1335-1344.
– reference: Liu W, Singh R, Choi CS, Hui-Young L, Keramati AR, Samuel VT, Lifton RP, Shulman GI, Mani A. 2012. LDL Receptor Related Protein 6 (LRP6) regulates body fat and glucose homeostasis by modulating nutrient sensing pathways and mitochondrial energy expenditure. J Biol Chem 287(10):7213-7223.
– volume: 75
  start-page: 832
  issue: 5
  year: 2004
  end-page: 843
  article-title: Association of the gene encoding wingless‐type mammary tumor virus integration‐site family member 5B (WNT5B) with type 2 diabetes
  publication-title: Am J Hum Genet
– volume: 4
  start-page: 4
  year: 2003
  article-title: Wnt/Wingless signaling through beta‐catenin requires the function of both /Arrow and frizzled classes of receptors
  publication-title: BMC Cell Biol
– volume: 316
  start-page: 1341
  issue: 5829
  year: 2007
  end-page: 1345
  article-title: A genome‐wide association study of type 2 diabetes in Finns detects multiple susceptibility variants
  publication-title: Science
– volume: 14
  start-page: 59
  year: 1998
  end-page: 88
  article-title: Mechanisms of Wnt signaling in development
  publication-title: Annu Rev Cell Dev Biol
– volume: 17
  start-page: 197
  issue: 2
  year: 2013
  end-page: 209
  article-title: LRP6 enhances glucose metabolism by promoting TCF7L2‐dependent insulin receptor expression and IGF receptor stabilization in humans
  publication-title: Cell Metab
– volume: 18
  start-page: 1204
  issue: 11
  year: 2011
  end-page: 1210
  article-title: Crystal structures of the extracellular domain of 6 and its complex with 1
  publication-title: Nat Struct Mol Biol
– volume: 85
  start-page: 19
  issue: 1
  year: 2012
  end-page: 28
  article-title: Low‐density lipoprotein receptor ( ) family orchestrates cholesterol homeostasis
  publication-title: Yale J Biol Med
– volume: 1
  start-page: 445
  issue: 6
  year: 1992
  end-page: 466
  article-title: Molecular genetics of the receptor gene in familial hypercholesterolemia
  publication-title: Hum Mutat
– volume: 108
  start-page: 17022
  issue: 41
  year: 2011
  end-page: 17027
  article-title: Modulation of canonical nt signaling by the extracellular matrix component biglycan
  publication-title: Proc Natl Acad Sci USA
– volume: 305
  start-page: 869
  issue: 5685
  year: 2004
  end-page: 872
  article-title: Multiple rare alleles contribute to low plasma levels of cholesterol
  publication-title: Science
– volume: 103
  start-page: 1280
  issue: 11
  year: 2008
  end-page: 1288
  article-title: Mutation in domain of receptor‐related protein 6 impairs cellular clearance
  publication-title: Circ Res
– volume: 445
  start-page: 881
  issue: 7130
  year: 2007
  end-page: 885
  article-title: A genome‐wide association study identifies novel risk loci for type 2 diabetes
  publication-title: Nature
– volume: 40
  start-page: 592
  issue: 5
  year: 2008
  end-page: 599
  article-title: Rare independent mutations in renal salt handling genes contribute to blood pressure variation
  publication-title: Nat Genet
– volume: 108
  start-page: 1914
  issue: 5
  year: 2011
  end-page: 1918
  article-title: Wild‐type 6 inhibits, whereas atherosclerosis‐linked 6R611C increases ‐dependent vascular smooth muscle cell proliferation
  publication-title: Proc Natl Acad Sci USA
– volume: 287
  start-page: 1335
  issue: 2
  year: 2012
  end-page: 1344
  article-title: 6 protein regulates low density lipoprotein ( ) receptor‐mediated uptake
  publication-title: J Biol Chem
– volume: 287
  start-page: 7213
  issue: 10
  year: 2012
  end-page: 7223
  article-title: Receptor Related Protein 6 ( 6) regulates body fat and glucose homeostasis by modulating nutrient sensing pathways and mitochondrial energy expenditure
  publication-title: J Biol Chem
– volume: 315
  start-page: 1278
  issue: 5816
  year: 2007
  end-page: 1282
  article-title: 6 mutation in a family with early coronary disease and metabolic risk factors
  publication-title: Science
– volume: 445
  start-page: 881
  issue: 7130
  year: 2007
  ident: 10.1002/humu.22360-BIB0015|humu22360-cit-0015
  article-title: A genome-wide association study identifies novel risk loci for type 2 diabetes
  publication-title: Nature
  doi: 10.1038/nature05616
– volume: 108
  start-page: 1914
  issue: 5
  year: 2011
  ident: 10.1002/humu.22360-BIB0008|humu22360-cit-0008
  article-title: Wild-type LRP6 inhibits, whereas atherosclerosis-linked LRP6R611C increases PDGF-dependent vascular smooth muscle cell proliferation
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1019443108
– volume: 287
  start-page: 7213
  issue: 10
  year: 2012
  ident: 10.1002/humu.22360-BIB0010|humu22360-cit-0010
  article-title: LDL Receptor Related Protein 6 (LRP6) regulates body fat and glucose homeostasis by modulating nutrient sensing pathways and mitochondrial energy expenditure
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.286724
– volume: 316
  start-page: 1341
  issue: 5829
  year: 2007
  ident: 10.1002/humu.22360-BIB0013|humu22360-cit-0013
  article-title: A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants
  publication-title: Science
  doi: 10.1126/science.1142382
– volume: 17
  start-page: 197
  issue: 2
  year: 2013
  ident: 10.1002/humu.22360-BIB0014|humu22360-cit-0014
  article-title: LRP6 enhances glucose metabolism by promoting TCF7L2-dependent insulin receptor expression and IGF receptor stabilization in humans
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2013.01.009
– volume: 14
  start-page: 59
  year: 1998
  ident: 10.1002/humu.22360-BIB0016|humu22360-cit-0016
  article-title: Mechanisms of Wnt signaling in development
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev.cellbio.14.1.59
– volume: 40
  start-page: 592
  issue: 5
  year: 2008
  ident: 10.1002/humu.22360-BIB0006|humu22360-cit-0006
  article-title: Rare independent mutations in renal salt handling genes contribute to blood pressure variation
  publication-title: Nat Genet
  doi: 10.1038/ng.118
– volume: 75
  start-page: 832
  issue: 5
  year: 2004
  ident: 10.1002/humu.22360-BIB0007|humu22360-cit-0007
  article-title: Association of the gene encoding wingless-type mammary tumor virus integration-site family member 5B (WNT5B) with type 2 diabetes
  publication-title: Am J Hum Genet
  doi: 10.1086/425340
– volume: 18
  start-page: 1204
  issue: 11
  year: 2011
  ident: 10.1002/humu.22360-BIB0002|humu22360-cit-0002
  article-title: Crystal structures of the extracellular domain of LRP6 and its complex with DKK1
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.2139
– volume: 305
  start-page: 869
  issue: 5685
  year: 2004
  ident: 10.1002/humu.22360-BIB0003|humu22360-cit-0003
  article-title: Multiple rare alleles contribute to low plasma levels of HDL cholesterol
  publication-title: Science
  doi: 10.1126/science.1099870
– volume: 1
  start-page: 445
  issue: 6
  year: 1992
  ident: 10.1002/humu.22360-BIB0005|humu22360-cit-0005
  article-title: Molecular genetics of the LDL receptor gene in familial hypercholesterolemia
  publication-title: Hum Mutat
  doi: 10.1002/humu.1380010602
– volume: 103
  start-page: 1280
  issue: 11
  year: 2008
  ident: 10.1002/humu.22360-BIB0009|humu22360-cit-0009
  article-title: Mutation in EGFP domain of LDL receptor-related protein 6 impairs cellular LDL clearance
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.108.183863
– volume: 315
  start-page: 1278
  issue: 5816
  year: 2007
  ident: 10.1002/humu.22360-BIB0011|humu22360-cit-0011
  article-title: LRP6 mutation in a family with early coronary disease and metabolic risk factors
  publication-title: Science
  doi: 10.1126/science.1136370
– volume: 108
  start-page: 17022
  issue: 41
  year: 2011
  ident: 10.1002/humu.22360-BIB0001|humu22360-cit-0001
  article-title: Modulation of canonical Wnt signaling by the extracellular matrix component biglycan
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1110629108
– volume: 4
  start-page: 4
  year: 2003
  ident: 10.1002/humu.22360-BIB0012|humu22360-cit-0012
  article-title: Wnt/Wingless signaling through beta-catenin requires the function of both LRP/Arrow and frizzled classes of receptors
  publication-title: BMC Cell Biol
  doi: 10.1186/1471-2121-4-4
– volume: 85
  start-page: 19
  issue: 1
  year: 2012
  ident: 10.1002/humu.22360-BIB0004|humu22360-cit-0004
  article-title: Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis
  publication-title: Yale J Biol Med
– volume: 287
  start-page: 1335
  issue: 2
  year: 2012
  ident: 10.1002/humu.22360-BIB0017|humu22360-cit-0017
  article-title: LRP6 protein regulates low density lipoprotein (LDL) receptor-mediated LDL uptake
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.295287
– reference: 17293876 - Nature. 2007 Feb 22;445(7130):881-5
– reference: 9891778 - Annu Rev Cell Dev Biol. 1998;14:59-88
– reference: 23395167 - Cell Metab. 2013 Feb 5;17(2):197-209
– reference: 15386214 - Am J Hum Genet. 2004 Nov;75(5):832-43
– reference: 17332414 - Science. 2007 Mar 2;315(5816):1278-82
– reference: 18948618 - Circ Res. 2008 Nov 21;103(11):1280-8
– reference: 21969569 - Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):17022-7
– reference: 22461740 - Yale J Biol Med. 2012 Mar;85(1):19-28
– reference: 18391953 - Nat Genet. 2008 May;40(5):592-9
– reference: 22232553 - J Biol Chem. 2012 Mar 2;287(10):7213-23
– reference: 17463248 - Science. 2007 Jun 1;316(5829):1341-5
– reference: 12729465 - BMC Cell Biol. 2003 May 2;4:4
– reference: 21984209 - Nat Struct Mol Biol. 2011 Nov;18(11):1204-10
– reference: 22128165 - J Biol Chem. 2012 Jan 6;287(2):1335-44
– reference: 15297675 - Science. 2004 Aug 6;305(5685):869-72
– reference: 1301956 - Hum Mutat. 1992;1(6):445-66
– reference: 21245321 - Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):1914-8
SSID ssj0008553
Score 2.3612008
Snippet ABSTRACT A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The...
A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The...
A rare mutation in LRP6 has been shown to underlie autosomal dominant coronary artery disease (CAD) and metabolic syndrome in an Iranian kindred. The...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1221
SubjectTerms Adult
Aged
Cardiovascular disease
Case-Control Studies
coronary artery disease
Coronary Disease - complications
Coronary Disease - genetics
Coronary Disease - metabolism
Europe
Female
Genetic Predisposition to Disease
Genetic Variation
Glycosylation
Humans
Low Density Lipoprotein Receptor-Related Protein-6 - genetics
Low Density Lipoprotein Receptor-Related Protein-6 - metabolism
LRP6
Male
Metabolic syndrome
Metabolic Syndrome - genetics
Metabolic Syndrome - metabolism
Middle Aged
Mutation
Pedigree
Phylogeny
Sequence Alignment
United States
Wnt Proteins - metabolism
Young Adult
Title Rare Nonconservative LRP6 Mutations Are Associated with Metabolic Syndrome
URI https://api.istex.fr/ark:/67375/WNG-P384RBP1-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhumu.22360
https://www.ncbi.nlm.nih.gov/pubmed/23703864
https://www.proquest.com/docview/1760164490
https://www.proquest.com/docview/1426003972
https://www.proquest.com/docview/1540223620
https://pubmed.ncbi.nlm.nih.gov/PMC3745535
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB-OE8UXP86vnqdUFEGhe9smaVLwRcVzOeyyrC7ei4RpmnLHnd1jdyvqX28-2q6rx4G-FTIJ6WQm-SWZ_AbgWUyKIhY2v4tZfyILGaIsoyoalpmIq4pWcWYfCufjdDSjh0fsaAtedW9hPD9Ef-BmPcPN19bBsVjur0lDj5uvzcAsbqndsNtgLYuIpmvuKMGYj65nmYGQGe25SZP9ddWN1eiKVez3i6Dm3xGTvyNZtxQd3IQv3U_4CJTTQbMqBurnH_yO__uXt-BGi1HD196obsOWrnfgqs9a-WMHruXtffwdOJziQofjea1sULY73v2mww_TSRrmjb_kX5p2dNhZgS5De_Ib5nplrO_sRIUfW8qEuzA7ePfp7ShqszNEigoyjBSSNK3KJNYlIlEaeYrDUiuOidJZhQx5gii03QJTgYQaoCW0IKixMvUYuQfb9bzWDyCkHLWpWMW8RJrRCgkXqRoygZrQgvEAXnSjJFVLXW4zaJxJT7qcSKsm6dQUwNNe9twTdlwo9dwNdi-Ci1Mb4saZ_Dx-LydE0OmbSSzjAPY6a5Ctdy9lzB0PG81MO0_6YuOX9rIFaz1vjIyj_jdoL7lExsBl253EtHPfG1jfoYSYuVikNAC-YXq9gOUF3yypT44dP7jRt7F9FsBLZ1mXqEGOZvnMfe3-i_BDuJ64rCA21G4PtleLRj8y2GxVPHY--AvpuDWz
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELfQJh5feIzHwgYEgZBAStfEdux85DXKaKqqrNq-WRfH0aZtKWobNPbXz-ekKYVpEnyL5LPlnO_sn-3z7wh5HdIsCyXmd7HrT4CQIUgSpoNunsiwKFgRJvhQOB3EvTHbO-SHTWwOvoWp-SHaAzf0DDdfo4PjgfTOkjX0qDqrOnZ1i-2OfR1TemMCg0-jJXuU5LyOr-eJBZEJa9lJo51l3ZX1aB1Ve34V2Pw7ZvJ3LOsWo917dcbVmeMwxBiUk041zzr64g-Gx__-z_vkbgNT_fe1XT0gN0y5QW7WiSt_bZBbaXMl_5DsjWBq_MGk1BiX7U54fxq_PxrGflrV9_wz247xF4Zgch8Pf_3UzK0Bnh5r_3vDmvCIjHc_73_sBU2ChkAzSbuBBhrHRR6FJgeg2oCIoZsbLSDSJimAg4gApMFdMJNAmcVa0kgKBgpbj9PHZK2clGaT-EyAsRWLUOTAElYAFTLWXS7BUJZx4ZG3i2FSumEvxyQap6rmXY4Uqkk5NXnkVSv7o-bsuFLqjRvtVgSmJxjlJrg6GHxRQyrZ6MMwVKFHthfmoBoHn6lQOCo2lth2XrbF1jXxvgVKM6msjGP_t4AvukbGImbsTmTbeVJbWNuhiNrpWMbMI2LF9loBpAZfLSmPjxxFuNW3NX7ukXfOtK5Rg-qN07H7evovwi_I7d5-2lf9r4NvW-RO5JKEYOTdNlmbTyvzzEK1efbcOeQlFk85zQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemTUy8MBhfGQOCQEggpWtiO3YkXvgqZSxVVajYC7IujqNNG-nUNQj46zk7H6UwTYK3SD5bzvnO_tk-_46QJyHNslDa_C64_gQWMgRJwnTQzxMZFgUrwsQ-FE5H8XDK9g_54Rp50b6FqfkhugM36xluvrYOfpYXe0vS0KPqa9XDxS3GDfsGi9FbLCSaLMmjJOd1eD1PEEMmrCMnjfaWdVeWow2r2e8XYc2_QyZ_h7JuLRpskS_tX9QhKCe9apH19M8_CB7_9zevk2sNSPVf1lZ1g6yZcptcqdNW_tgmm2lzIX-T7E9gbvzRrNQ2Ktud734z_sFkHPtpVd_yn2M7xm_NwOS-Pfr1U7NA8zs91v7HhjPhFpkO3n56PQya9AyBZpL2Aw00jos8Ck0OQLUBEUM_N1pApE1SAAcRAUhj98BMAmWItKSRFAwUWI_T22S9nJXmLvGZAIMVi1DkwBJWABUy1n0uwVCWceGRZ-0oKd1wl9sUGqeqZl2OlFWTcmryyONO9qxm7LhQ6qkb7E4E5ic2xk1w9Xn0To2pZJNX41CFHtltrUE17n2uQuGI2FiC7TzqitEx7W0LlGZWoYzj_ke4F10ig3jZdifCdu7UBtZ1KKI4GcuYeUSsmF4nYInBV0vK4yNHEI76RtvnHnnuLOsSNajhNJ26r51_EX5INsdvBurg_ejDPXI1chlCbNjdLllfzCtzH3HaInvg3PEXZB04hQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rare+Nonconservative+LRP6+Mutations+Are+Associated+with+Metabolic+Syndrome&rft.jtitle=Human+mutation&rft.au=Singh%2C+Rajvir&rft.au=Smith%2C+Emily&rft.au=Fathzadeh%2C+Mohsen&rft.au=Liu%2C+Wenzhong&rft.date=2013-09-01&rft.issn=1059-7794&rft.eissn=1098-1004&rft.volume=34&rft.issue=9&rft.spage=1221&rft.epage=1225&rft_id=info:doi/10.1002%2Fhumu.22360&rft.externalDBID=10.1002%252Fhumu.22360&rft.externalDocID=HUMU22360
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-7794&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-7794&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-7794&client=summon