Evaluating methods for handling missing ordinal data in structural equation modeling
Missing ordinal data are common in studies using structural equation modeling (SEM). Although several methods for dealing with missing ordinal data have been available, these methods often have not been systematically evaluated in SEM. In this study, we used Monte Carlo simulation to evaluate and co...
Saved in:
Published in | Behavior research methods Vol. 51; no. 5; pp. 2337 - 2355 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Missing ordinal data are common in studies using structural equation modeling (SEM). Although several methods for dealing with missing ordinal data have been available, these methods often have not been systematically evaluated in SEM. In this study, we used Monte Carlo simulation to evaluate and compare five existing methods, including one direct robust estimation method and four multiple imputation methods, to deal with missing ordinal data. On the basis of the simulation results, we provide practical guidance to researchers in terms of the best way to deal with missing ordinal data in SEM. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1554-3528 1554-3528 |
DOI: | 10.3758/s13428-018-1187-4 |