Integrated drying model of lychee as a function of temperature and relative humidity

Drying is a universal method applied for food preservation. To date, several models have been developed to evaluate drying kinetics. In this study, lychee was dried employing a hot air dryer, and the drying kinetics was evaluated by comparing the Newtonian model, Henderson and Pabis model, Page mode...

Full description

Saved in:
Bibliographic Details
Published inHeliyon Vol. 10; no. 7; p. e28590
Main Authors Ahmed, Shafaet, Mozumder, Md Salatul Islam, Zzaman, Wahidu, Yasin, Md, Das, Shuvo
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.04.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Drying is a universal method applied for food preservation. To date, several models have been developed to evaluate drying kinetics. In this study, lychee was dried employing a hot air dryer, and the drying kinetics was evaluated by comparing the Newtonian model, Henderson and Pabis model, Page model, and Logarithmic model. However, temperature and relative humidity, the key driving forces for drying kinetics, are not considered by these models. Thus, an integrated drying model, as a function of temperature and relative humidity, was developed to predict the hot air-drying kinetics and mass transfer phenomena of lychee followed by the calibration and validation of the model with independent experimental datasets. The model validation consisted of Nash- Sutcliffe model coefficient (E), coefficient of determination (R2) and index of agreement (d) and all of them were found close to 1 indicating perfect model fit. Besides, the developed model was applied for process optimization and scenario analysis. The drying rate constant was found as a function of temperature and relative humidity that was high at high temperature and low relative humidity. Interestingly, temperature showed a higher effect on the drying rate constant compared to relative humidity. Overall, the present study will open a new window to developing further drying model of lychee to optimize quality its quality parameters.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e28590