Gentamicin Release Study in Uniaxial and Coaxial Polyhydroxybutyrate–Polyethylene Glycol–Gentamicin Microfibers Treated with Atmospheric Plasma

The skin is the largest organ and one of the most important in the human body, and is constantly exposed to pathogenic microorganisms that cause infections; then, pharmacological administration is required. One of the basic medical methods for treating chronic wounds is to use topical dressings with...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 15; no. 19; p. 3889
Main Authors Transito-Medina, Josselyne, Vázquez-Vélez, Edna, Castillo, Marilú Chávez, Martínez, Horacio, Campillo, Bernardo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 26.09.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The skin is the largest organ and one of the most important in the human body, and is constantly exposed to pathogenic microorganisms that cause infections; then, pharmacological administration is required. One of the basic medical methods for treating chronic wounds is to use topical dressings with characteristics that promote wound healing. Fiber-based dressings mimic the local dermal extracellular matrix (ECM), maintaining an ideal wound-healing climate. This work proposes electrospun PHB/PEG polymeric microfibers as dressings for administering the antibiotic gentamicin directed at skin infections. PHB-PEG/gentamicin fibers were characterized before and after plasma treatment by Raman spectroscopy, FTIR, and XRD. SEM was used to evaluate fiber morphology and yarn size. The plasma treatment improved the hydrophilicity of the PHB/PEG/gentamicin fibers. The release of gentamicin in the plasma-treated fibers was more sustained over time than in the untreated ones.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym15193889