Exploring pharmacokinetics of talazoparib in ABCB1/ABCG2-deficient mice using a novel UHPLC-MS/MS method

A rapid, sensitive, and simple UHPLC-MS/MS method for the determination of the PARP inhibitor talazoparib in mouse plasma was developed and validated using [13C,2H4]-talazoparib as an internal standard (IS). The assay procedure involved extraction of talazoparib and the IS from plasma using a single...

Full description

Saved in:
Bibliographic Details
Published inHeliyon Vol. 9; no. 11; p. e20972
Main Authors Talebi, Zahra, Garrison, Dominique A., Eisenmann, Eric D., Parmar, Kalindi, Shapiro, Geoffrey I., Rudek, Michelle A., Sparreboom, Alex, Jin, Yan
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.11.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A rapid, sensitive, and simple UHPLC-MS/MS method for the determination of the PARP inhibitor talazoparib in mouse plasma was developed and validated using [13C,2H4]-talazoparib as an internal standard (IS). The assay procedure involved extraction of talazoparib and the IS from plasma using a single-step deproteination and separation of the analytes was achieved on an ACQUITY UPLC RP18 HSS T3 column with a mobile phase gradient at a flow rate of 0.4 mL/min in a run time of 5 min. The calibration curve was linear (r2 > 0.99) over the concentration range of 0.5–100 ng/mL, and 10-fold dilution of samples could be accurately quantitated. The matrix effect and mean extraction recovery for talazoparib were between 93.7-109% and 87.7–105%, respectively. Precision and percent bias of quality control samples were always less than ±15%, indicating reproducibility and accuracy of the method. Talazoparib demonstrated bench-top stability at room temperature for 6 h, auto-sampler and reinjection stability at 4 °C for at least 24 h, and no significant degradation was observed after three freeze-thaw cycles. The developed method was successfully applied to pharmacokinetic studies involving serial blood sampling after oral administration of talazoparib to wild-type mice and animals with a genetic deficiency of the efflux transporters ABCB1 (P-gp) and ABCG2 (BCRP). Together, our results demonstrate the successful development of a suitable analytical method for talazoparib in mouse plasma and suggest that mice are a useful model to evaluate transporter-mediated drug-drug interactions involving therapy with talazoparib.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2023.e20972