Mcl-1 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in human cholangiocarcinoma cells

Cholangiocarcinomas are usually fatal neoplasms originating from bile duct epithelia. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for cancer therapy, including cholangiocarcinoma. However, many cholangiocarcinoma cells are resistant to TRAIL-mediated apoptosi...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 64; no. 10; pp. 3517 - 3524
Main Authors TANIAI, Makiko, GRAMBIHLER, Annette, HIGUCHI, Hajime, WERNEBURG, Nate, BRONK, Steve F, FARRUGIA, Daniel J, KAUFMANN, Scott H, GORES, Gregory J
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Association for Cancer Research 15.05.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cholangiocarcinomas are usually fatal neoplasms originating from bile duct epithelia. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for cancer therapy, including cholangiocarcinoma. However, many cholangiocarcinoma cells are resistant to TRAIL-mediated apoptosis. Thus, our aim was to examine the intracellular mechanisms responsible for TRAIL resistance in human cholangiocarcinoma cell lines. Three TRAIL-resistant human cholangiocarcinoma cell lines were identified. All of the cell lines expressed TRAIL receptor 1/death receptor 4 (TRAIL-R1/DR4) and TRAIL-R2/DR5. Expression of TRAIL decoy receptors and the antiapoptotic cellular FLICE-inhibitory protein (cFLIP) was inconsistent across the cell lines. Of the antiapoptotic Bcl-2 family of proteins profiled (Bcl-2, Bcl-x(L), and Mcl-1), Mcl-1 was uniquely overexpressed by the cell lines. When small-interfering-RNA (siRNA) technology was used to knock down expression of Bcl-2, Bcl-x(L), and Mcl-1, only the Mcl-1-siRNA sensitized the cells to TRAIL-mediated apoptosis. In a cell line stably transfected with Mcl-1-small-hairpin-RNA (Mcl-1-shRNA), Mcl-1 depletion sensitized cells to TRAIL-mediated apoptosis despite Bcl-2 expression. TRAIL-mediated apoptosis in the stably transfected cells was associated with mitochondrial depolarization, Bax activation, cytochrome c release from mitochondria, and caspase activation. Finally, flavopiridol, an anticancer drug that rapidly down-regulates Mcl-1, also sensitized cells to TRAIL cytotoxicity. In conclusion, these studies not only demonstrate that Mcl-1 mediates TRAIL resistance in cholangiocarcinoma cells by blocking the mitochondrial pathway of cell death but also identify two strategies for circumventing this resistance.
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.CAN-03-2770