Powerful and controllable angiogenesis by using gene-modified cells expressing human hepatocyte growth factor and thymidine kinase

This study investigated the possibility of achieving angiogenesis by using gene-modified cells as a vector. Although gene therapy for peripheral circulation disorders has been studied intensively, the plasmid or viral vectors have been associated with several disadvantages, including unreliable tran...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American College of Cardiology Vol. 43; no. 10; pp. 1915 - 1922
Main Authors Hisaka, Yasuyo, Ieda, Masaki, Nakamura, Toshikazu, Kosai, Ken-ichiro, Ogawa, Satoshi, Fukuda, Keiichi
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 19.05.2004
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study investigated the possibility of achieving angiogenesis by using gene-modified cells as a vector. Although gene therapy for peripheral circulation disorders has been studied intensively, the plasmid or viral vectors have been associated with several disadvantages, including unreliable transfection and uncontrollable gene expression. Human hepatocyte growth factor (hHGF) and thymidine kinase (TK) expression plasmids were serially transfected into NIH3T3 cells, and permanent transfectants were selected (NIH3T3 + hHGF + TK). Unilateral hindlimb ischemia was surgically induced in BALB/c nude mice, and cells were transplanted into the thigh muscles. All effects were assessed at four weeks. The messenger ribonucleic acid expression and protein production of hHGF were confirmed. Assay of growth inhibition by ganciclovir revealed that the 50% (median) inhibitory concentration of50 at first mention (50% “I?” concentration)> NIH3T3 + hHGF + TK was 1,000 times lower than that of NIH3T3 + hHGF. The NIH3T3 + hHGF + TK group had a higher laser Doppler blood perfusion index, higher microvessel density, wider microvessel diameter, and lower rate of hindlimb necrosis, as compared with the plasmid- and adenovirus-mediated hHGF transfection groups or the NIH3T3 group. The newly developed microvessels were accompanied by smooth muscle cells, as well as endothelial cells, indicating that they were on the arteriolar or venular level. Laser Doppler monitoring showed that the rate of blood perfusion could be controlled by oral administration of ganciclovir. The transplanted cells completely disappeared in response to ganciclovir administration for four weeks. Gene-modified cell transplantation therapy induced strong angiogenesis and collateral vessel formation that could be controlled externally with ganciclovir.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0735-1097
1558-3597
DOI:10.1016/j.jacc.2004.01.034