A decision tree model for accurate prediction of sand erosion in elbow geometry

Erosion of piping components, e.g., elbows, is a hazardous phenomenon that frequently occurs due to sand flow with fluids during petroleum production. Early prediction of the sand's erosion rate (ER) is essential for ensuring a safe flow process and material integrity. Some models have been app...

Full description

Saved in:
Bibliographic Details
Published inHeliyon Vol. 9; no. 7; p. e17639
Main Authors Alakbari, Fahd Saeed, Mohyaldinn, Mysara Eissa, Ayoub, Mohammed Abdalla, Salih, Abdullah Abduljabbar, Abbas, Azza Hashim
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.07.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Erosion of piping components, e.g., elbows, is a hazardous phenomenon that frequently occurs due to sand flow with fluids during petroleum production. Early prediction of the sand's erosion rate (ER) is essential for ensuring a safe flow process and material integrity. Some models have been applied to determine the ER of the sand in the literature. However, these models have been created based on specific data to require a model for application to wide-range data. Moreover, the previous models have not studied relationships between independent and dependent variables. Thus, this research aims to use machine learning techniques, namely linear regression and decision tree (DT), to predict the ER robustly. The optimum model, the DT model, was evaluated using various trend analysis and statistical error analyses (SEA) techniques, namely the correlation coefficient (R). The evaluation results proved proper physical behavior for all independent variables, along with high accuracy and the DT model robustness. The proposed DT method can accurately predict the ER with R of 0.9975, 0.9911, 0.9761, and 0.9908, AAPRE of 5.0%, 6.27%, 6.26%, and 5.5%, RMSE of 2.492E-05, 6.189E-05, 9.310E-05, and 5.339E-05, and STD of 13.44, 6.66, 8.01, and 11.44 for the training, validation, testing, and whole datasets, respectively. Hence, this study delivers an effective, robust, accurate, and fast prediction tool for ER determination, significantly saving the petroleum industry's cost and time.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2023.e17639