Ecological Role of Volatile Organic Compounds Emitted by Pantoea agglomerans as Interspecies and Interkingdom Signals

Volatile organic compounds (VOCs) play an essential role in microbe–microbe and plant–microbe interactions. We investigated the interaction between two plant growth-promoting rhizobacteria, and their interaction with tomato plants. VOCs produced by Pantoea agglomerans MVC 21 modulates the release of...

Full description

Saved in:
Bibliographic Details
Published inMicroorganisms (Basel) Vol. 9; no. 6; p. 1186
Main Authors Vasseur-Coronado, Maria, Vlassi, Anthi, Boulois, Hervé Dupré du, Schuhmacher, Rainer, Parich, Alexandra, Pertot, Ilaria, Puopolo, Gerardo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 31.05.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Volatile organic compounds (VOCs) play an essential role in microbe–microbe and plant–microbe interactions. We investigated the interaction between two plant growth-promoting rhizobacteria, and their interaction with tomato plants. VOCs produced by Pantoea agglomerans MVC 21 modulates the release of siderophores, the solubilisation of phosphate and potassium by Pseudomonas (Ps.) putida MVC 17. Moreover, VOCs produced by P. agglomerans MVC 21 increased lateral root density (LRD), root and shoot dry weight of tomato seedlings. Among the VOCs released by P. agglomerans MVC 21, only dimethyl disulfide (DMDS) showed effects similar to P. agglomerans MVC 21 VOCs. Because of the effects on plants and bacterial cells, we investigated how P. agglomerans MVC 21 VOCs might influence bacteria–plant interaction. Noteworthy, VOCs produced by P. agglomerans MVC 21 boosted the ability of Ps. putida MVC 17 to increase LRD and root dry weight of tomato seedlings. These results could be explained by the positive effect of DMDS and P. agglomerans MVC 21 VOCs on acid 3-indoleacetic production in Ps. putida MVC 17. Overall, our results clearly indicated that P. agglomerans MVC 21 is able to establish a beneficial interaction with Ps. putida MVC 17 and tomato plants through the emission of DMDS.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2076-2607
2076-2607
DOI:10.3390/microorganisms9061186