Macrophage Immunometabolism: Where Are We (Going)?

A growing number of findings highlight the crucial role of metabolic reprogramming in macrophage activation. Metabolic pathways are closely interconnected and recent literature demonstrates the need for glucose metabolism in anti-inflammatory as well as inflammatory macrophages. Moreover, fatty acid...

Full description

Saved in:
Bibliographic Details
Published inTrends in immunology Vol. 38; no. 6; pp. 395 - 406
Main Authors Van den Bossche, Jan, O’Neill, Luke A., Menon, Deepthi
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2017
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A growing number of findings highlight the crucial role of metabolic reprogramming in macrophage activation. Metabolic pathways are closely interconnected and recent literature demonstrates the need for glucose metabolism in anti-inflammatory as well as inflammatory macrophages. Moreover, fatty acid oxidation (FAO) not only supports anti-inflammatory responses as described formerly but also drives inflammasome activation in inflammatory macrophages. Hence, defining glycolysis as proinflammatory and FAO as anti-inflammatory may be an oversimplification. Here we review how the rapid growth of the immunometabolism field has improved our understanding of macrophage activation and at the same time has led to an increase in the appearance of contradictory observations. To conclude we discuss current challenges in immunometabolism and present crucial areas for future research. Metabolic reprogramming of macrophages plays a predominant role in regulating their phenotype but also their plasticity. Metabolic repurposing of mitochondria is key to the regulation of proinflammatory responses including the expression of pro-IL-1β and the generation of reactive oxygen species via reverse electron transport. In vivo macrophages are subject to a plethora of stimuli that often do not fully fit in the binary M1/M2 frame. Moreover, nutrient competition adds an extra layer of complexity to their functional regulation. The differences between human and mouse macrophages remain in the process of being elucidated. The inability of human macrophages to produce nitric oxide in vitro, unlike murine macrophages, introduces the possibility of differential metabolic reprogramming between the two cell types.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:1471-4906
1471-4981
1471-4981
DOI:10.1016/j.it.2017.03.001