Designing of Co0.5Ni0.5GaxFe2−xO4 (0.0 ≤ x ≤ 1.0) Microspheres via Hydrothermal Approach and Their Selective Inhibition on the Growth of Cancerous and Fungal Cells

The current study offers an efficient design of novel nanoparticle microspheres (MCs) using a hydrothermal approach. The Co0.5Ni0.5GaxFe2−xO4 (0.0 ≤ x ≤ 1.0) MCs were prepared by engineering the elements, such as cobalt (Co), nickel (Ni), iron (Fe), and gallium (Ga). There was a significant variatio...

Full description

Saved in:
Bibliographic Details
Published inPharmaceutics Vol. 13; no. 7; p. 962
Main Authors Rehman, Suriya, Almessiere, Munirah A., Al-Jameel, Suhailah S., Ali, Uzma, Slimani, Yassine, Tashkandi, Nedaa, Al-Saleh, Najat S., Manikandan, Ayyar, Khan, Firdos Alam, Al-Suhaimi, Ebtesam A., Baykal, Abdulhadi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 26.06.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The current study offers an efficient design of novel nanoparticle microspheres (MCs) using a hydrothermal approach. The Co0.5Ni0.5GaxFe2−xO4 (0.0 ≤ x ≤ 1.0) MCs were prepared by engineering the elements, such as cobalt (Co), nickel (Ni), iron (Fe), and gallium (Ga). There was a significant variation in MCs’ physical structure and surface morphology, which was evaluated using energy dispersive X-ray analysis (EDX), X-ray diffractometer (XRD), high-resolution transmission electron microscopy (HR-TEM), and scanning electron microscope (SEM). The anti-proliferative activity of MCs was examined by MTT assay and DAPI staining using human colorectal carcinoma cells (HCT-116), human cervical cancer cells (HeLa), and a non-cancerous cell line—human embryonic kidney cells (HEK-293). Post 72 h treatment, MCs caused a dose dependent inhibition of growth and proliferation of HCT-116 and HeLa cells. Conversely, no cytotoxic effect was observed on HEK-293 cells. The anti-fungal action was assessed by the colony forming units (CFU) technique and SEM, resulting in the survival rate of Candida albicans as 20%, with severe morphogenesis, on treatment with MCs x = 1.0. These findings suggest that newly engineered microspheres have the potential for pharmaceutical importance, in terms of infectious diseases and anti-cancer therapy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1999-4923
1999-4923
DOI:10.3390/pharmaceutics13070962