Response of hPDLSCs on 3D printed PCL/PLGA composite scaffolds in vitro
Three‑dimensional printed (3DP) scaffolds have become an excellent resource in alveolar bone regeneration. However, selecting suitable printable materials remains a challenge. In the present study, 3DP scaffolds were fabricated using three different ratios of poly (ε‑caprolactone) (PCL) and poly‑lac...
Saved in:
Published in | Molecular medicine reports Vol. 18; no. 2; pp. 1335 - 1344 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Greece
Spandidos Publications
01.08.2018
Spandidos Publications UK Ltd D.A. Spandidos |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Three‑dimensional printed (3DP) scaffolds have become an excellent resource in alveolar bone regeneration. However, selecting suitable printable materials remains a challenge. In the present study, 3DP scaffolds were fabricated using three different ratios of poly (ε‑caprolactone) (PCL) and poly‑lactic‑co‑glycolic acid (PLGA), which were 0.1PCL/0.9PLGA, 0.5PCL/0.5PLGA and 0.9PCL/0.1PLGA. The surface characteristics and degradative properties of the scaffolds, and the response of human periodontal ligament stem cells (hPDLSCs) on the scaffolds, were assessed to examine the preferable ratio of PCL and PLGA for alveolar bone regeneration. The results demonstrated that the increased proportion of PLGA markedly accelerated the degradation, smoothed the surface and increased the wettability of the hybrid scaffold. Furthermore, the flow cytometry and Cell Counting Kit‑8 assay revealed that the adhesion and proliferation of hPDLSCs were markedlyincreased on the 0.5PCL/0.5PLGA and 0.1PCL/0.9PLGA scaffolds. Additionally, the alkaline phosphatase activity detection and reverse‑transcription quantitative polymerase chain reaction demonstrated that the hPDLSCs on the 0.5PCL/0.5PLGA scaffold exhibited the best osteogenic capacity. Consequently, PCL/PLGA composite scaffolds may represent a candidate focus for future bone regeneration studies, and the 0.5PCL/0.5PLGA scaffold demonstrated the best bio‑response from the hPDLSCs. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1791-2997 1791-3004 |
DOI: | 10.3892/mmr.2018.9076 |