Proximal alternating linearized minimization for nonconvex and nonsmooth problems

We introduce a proximal alternating linearized minimization (PALM) algorithm for solving a broad class of nonconvex and nonsmooth minimization problems. Building on the powerful Kurdyka–Łojasiewicz property, we derive a self-contained convergence analysis framework and establish that each bounded se...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming Vol. 146; no. 1-2; pp. 459 - 494
Main Authors Bolte, Jérôme, Sabach, Shoham, Teboulle, Marc
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2014
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We introduce a proximal alternating linearized minimization (PALM) algorithm for solving a broad class of nonconvex and nonsmooth minimization problems. Building on the powerful Kurdyka–Łojasiewicz property, we derive a self-contained convergence analysis framework and establish that each bounded sequence generated by PALM globally converges to a critical point. Our approach allows to analyze various classes of nonconvex-nonsmooth problems and related nonconvex proximal forward–backward algorithms with semi-algebraic problem’s data, the later property being shared by many functions arising in a wide variety of fundamental applications. A by-product of our framework also shows that our results are new even in the convex setting. As an illustration of the results, we derive a new and simple globally convergent algorithm for solving the sparse nonnegative matrix factorization problem.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-013-0701-9