A field‐tested robotic harvesting system for iceberg lettuce

Agriculture provides an unique opportunity for the development of robotic systems; robots must be developed which can operate in harsh conditions and in highly uncertain and unknown environments. One particular challenge is performing manipulation for autonomous robotic harvesting. This paper descri...

Full description

Saved in:
Bibliographic Details
Published inJournal of field robotics Vol. 37; no. 2; pp. 225 - 245
Main Authors Birrell, Simon, Hughes, Josie, Cai, Julia Y., Iida, Fumiya
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.03.2020
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Agriculture provides an unique opportunity for the development of robotic systems; robots must be developed which can operate in harsh conditions and in highly uncertain and unknown environments. One particular challenge is performing manipulation for autonomous robotic harvesting. This paper describes recent and current work to automate the harvesting of iceberg lettuce. Unlike many other produce, iceberg is challenging to harvest as the crop is easily damaged by handling and is very hard to detect visually. A platform called Vegebot has been developed to enable the iterative development and field testing of the solution, which comprises of a vision system, custom end effector and software. To address the harvesting challenges posed by iceberg lettuce a bespoke vision and learning system has been developed which uses two integrated convolutional neural networks to achieve classification and localization. A custom end effector has been developed to allow damage free harvesting. To allow this end effector to achieve repeatable and consistent harvesting, a control method using force feedback allows detection of the ground. The system has been tested in the field, with experimental evidence gained which demonstrates the success of the vision system to localize and classify the lettuce, and the full integrated system to harvest lettuce. This study demonstrates how existing state‐of‐the art vision approaches can be applied to agricultural robotics, and mechanical systems can be developed which leverage the environmental constraints imposed in such environments.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1556-4959
1556-4967
1556-4967
DOI:10.1002/rob.21888