Analysis of AC Losses in a Tri-axial Superconducting Cable

High temperature superconducting (HTS) cables have been studied because of low loss and compactness, compared with conventional copper cables. Three-phase cables are usually composed of three single-phase concentric cables. Recently, a tri-axial cable, composed of three concentric phases, has been i...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on applied superconductivity Vol. 17; no. 2; pp. 1692 - 1695
Main Authors Hamajima, T.., Tsuda, M.., Yagai, T.., Monma, S.., Satoh, H.., Shimoyama, K..
Format Journal Article Conference Proceeding
LanguageEnglish
Published New York, NY IEEE 01.06.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:High temperature superconducting (HTS) cables have been studied because of low loss and compactness, compared with conventional copper cables. Three-phase cables are usually composed of three single-phase concentric cables. Recently, a tri-axial cable, composed of three concentric phases, has been intensively developed, because it has advantages such as reduced amount of HTS tapes, low leakage fields, low heat leak and compactness, compared with the three single-phase cables. We analysed the three-phase current distributions in the tri-axial cable as functions of winding pitches of three concentric phase layers, and showed the balanced three-phase current distributions in the tri-axial cable. The each layer supplies a transport current under external magnetic field with the same frequency and different phase. We formulate the general form of AC loss of the transport current in combination with the external field with different phase, and analyse the AC loss of the tri-axial cable.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1051-8223
1558-2515
DOI:10.1109/TASC.2007.898338