Increased Expression of N2BA Titin Corresponds to More Compliant Myofibrils in Athlete's Heart

Long-term exercise induces physiological cardiac adaptation, a condition referred to as athlete's heart. Exercise tolerance is known to be associated with decreased cardiac passive stiffness. Passive stiffness of the heart muscle is determined by the giant elastic protein titin. The adult cardi...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 22; no. 20; p. 11110
Main Authors Kellermayer, Dalma, Kiss, Bálint, Tordai, Hedvig, Oláh, Attila, Granzier, Henk L, Merkely, Béla, Kellermayer, Miklós, Radovits, Tamás
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 15.10.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Long-term exercise induces physiological cardiac adaptation, a condition referred to as athlete's heart. Exercise tolerance is known to be associated with decreased cardiac passive stiffness. Passive stiffness of the heart muscle is determined by the giant elastic protein titin. The adult cardiac muscle contains two titin isoforms: the more compliant N2BA and the stiffer N2B. Titin-based passive stiffness may be controlled by altering the expression of the different isoforms or via post-translational modifications such as phosphorylation. Currently, there is very limited knowledge about titin's role in cardiac adaptation during long-term exercise. Our aim was to determine the N2BA/N2B ratio and post-translational phosphorylation of titin in the left ventricle and to correlate the changes with the structure and transverse stiffness of cardiac sarcomeres in a rat model of an athlete's heart. The athlete's heart was induced by a 12-week-long swim-based training. In the exercised myocardium the N2BA/N2B ratio was significantly increased, Ser11878 of the PEVK domain was hypophosphorlyated, and the sarcomeric transverse elastic modulus was reduced. Thus, the reduced passive stiffness in the athlete's heart is likely caused by a shift towards the expression of the longer cardiac titin isoform and a phosphorylation-induced softening of the PEVK domain which is manifested in a mechanical rearrangement locally, within the cardiac sarcomere.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms222011110