Dynamic heterogeneity as a strategy of stem cell self-renewal

To maintain cycling adult tissue in homeostasis the balance between proliferation and differentiation of stem cells needs to be precisely regulated. To investigate how stem cells achieve perfect self-renewal, emphasis has been placed on models in which stem cells progress sequentially through a one-...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 113; no. 27; pp. 7509 - 7514
Main Authors Greulich, Philip, Simons, Benjamin D.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 05.07.2016
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
DOI10.1073/pnas.1602779113

Cover

Loading…
Abstract To maintain cycling adult tissue in homeostasis the balance between proliferation and differentiation of stem cells needs to be precisely regulated. To investigate how stem cells achieve perfect self-renewal, emphasis has been placed on models in which stem cells progress sequentially through a one-way proliferative hierarchy. However, investigations of tissue regeneration have revealed a surprising degree of flexibility, with cells normally committed to differentiation able to recover stem cell competence following injury. Here, we investigate whether the reversible transfer of cells between states poised for proliferation or differentiation may provide a viable mechanism for a heterogeneous stem cell population to maintain homeostasis even under normal physiological conditions. By addressing the clonal dynamics, we show that such models of “dynamic heterogeneity” may be equally capable of describing the results of recent lineage tracing assays involving epithelial tissues. Moreover, together with competition for limited niche access, such models may provide a mechanism to render tissue homeostasis robust. In particular, in 2D epithelial layers, we show that the mechanism of dynamic heterogeneity avoids some pathological dependencies that undermine models based on a hierarchical stem/progenitor organization.
AbstractList To maintain cycling adult tissue in homeostasis the balance between proliferation and differentiation of stem cells needs to be precisely regulated. To investigate how stem cells achieve perfect self-renewal, emphasis has been placed on models in which stem cells progress sequentially through a one-way proliferative hierarchy. However, investigations of tissue regeneration have revealed a surprising degree of flexibility, with cells normally committed to differentiation able to recover stem cell competence following injury. Here, we investigate whether the reversible transfer of cells between states poised for proliferation or differentiation may provide a viable mechanism for a heterogeneous stem cell population to maintain homeostasis even under normal physiological conditions. By addressing the clonal dynamics, we show that such models of "dynamic heterogeneity" may be equally capable of describing the results of recent lineage tracing assays involving epithelial tissues. Moreover, together with competition for limited niche access, such models may provide a mechanism to render tissue homeostasis robust. In particular, in 2D epithelial layers, we show that the mechanism of dynamic heterogeneity avoids some pathological dependencies that undermine models based on a hierarchical stem/progenitor organization.
In many tissues, such as intestine and skin, cells are constantly turned over throughout life. To replenish cells that are lost, new cells are generated by stem cells, which divide and differentiate to maintain tissue in a steady state. The mechanisms that allow stem cells to achieve perfect self-renewal promise fundamental insights into processes leading to diseased states. Efforts to define strategies of stem cell self-renewal have placed emphasis on models in which stem cells progress one way through a differentiation hierarchy. Here, we show that a different paradigm, in which stem cells transfer reversibly between states primed for renewal or poised for differentiation, offers a viable and robust mechanism of tissue self-renewal. To maintain cycling adult tissue in homeostasis the balance between proliferation and differentiation of stem cells needs to be precisely regulated. To investigate how stem cells achieve perfect self-renewal, emphasis has been placed on models in which stem cells progress sequentially through a one-way proliferative hierarchy. However, investigations of tissue regeneration have revealed a surprising degree of flexibility, with cells normally committed to differentiation able to recover stem cell competence following injury. Here, we investigate whether the reversible transfer of cells between states poised for proliferation or differentiation may provide a viable mechanism for a heterogeneous stem cell population to maintain homeostasis even under normal physiological conditions. By addressing the clonal dynamics, we show that such models of “dynamic heterogeneity” may be equally capable of describing the results of recent lineage tracing assays involving epithelial tissues. Moreover, together with competition for limited niche access, such models may provide a mechanism to render tissue homeostasis robust. In particular, in 2D epithelial layers, we show that the mechanism of dynamic heterogeneity avoids some pathological dependencies that undermine models based on a hierarchical stem/progenitor organization.
Author Simons, Benjamin D.
Greulich, Philip
Author_xml – sequence: 1
  givenname: Philip
  surname: Greulich
  fullname: Greulich, Philip
  organization: Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, United Kingdom
– sequence: 2
  givenname: Benjamin D.
  surname: Simons
  fullname: Simons, Benjamin D.
  organization: Wellcome Trust/Medical Research Council Stem Cell Institute, Cambridge CB2 1QR, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27313213$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtP3DAUha2Kqgy0a1ZFWbIJ-PoZL1qpok8JiQ2sLcdzMxgl8WB7iubfN9HwKgtWtuzvnHvsc0D2xjgiIUdAT4FqfrYeXT4FRZnWBoC_IwugBmolDN0jCzqd141gYp8c5HxLKTWyoR_IPtMcOAO-IF--b0c3BF_dYMEUVzhiKNvK5cpVuSRXcLWtYjftcag89n2Vse_qNHH3rv9I3neuz_jpYT0k1z9_XJ3_ri8uf_05_3ZRe9FAqZtlJx1zBjkoyaV2QjPpuTHSS0ElKtUyAU7RtlMNa7VaIiJrOyM76Y2k_JB83fmuN-2AS4_jFK236xQGl7Y2umD_vxnDjV3Fv1YYARL4ZHDyYJDi3QZzsUPI83PciHGTLTSUCc0ZndHjl7Oehjz-2QSc7QCfYs4JuycEqJ1bsXMr9rmVSSFfKXworoQ4hw39G7rPO91tLjE9J1FCUw2a_wOKuJsA
CitedBy_id crossref_primary_10_1177_2472555216682725
crossref_primary_10_1016_j_coisb_2017_08_001
crossref_primary_10_1016_j_cois_2019_11_003
crossref_primary_10_1016_j_stem_2021_03_014
crossref_primary_10_1016_j_stemcr_2018_05_005
crossref_primary_10_1039_D0MO00085J
crossref_primary_10_1098_rsos_191090
crossref_primary_10_53065_kaznmu_2022_16_11_012
crossref_primary_10_1007_s40778_023_00230_7
crossref_primary_10_7554_eLife_20357
crossref_primary_10_1088_1367_2630_aac2ad
crossref_primary_10_1007_s00285_024_02057_0
crossref_primary_10_1242_dev_202796
crossref_primary_10_1371_journal_pone_0236519
crossref_primary_10_1073_pnas_1816100116
crossref_primary_10_1002_biot_201900314
crossref_primary_10_1038_s41598_022_12717_0
crossref_primary_10_1088_1478_3975_aba041
crossref_primary_10_1038_s41598_024_51386_z
crossref_primary_10_1016_j_jtbi_2020_110196
crossref_primary_10_3389_fcell_2024_1310265
crossref_primary_10_1016_j_mce_2016_12_008
crossref_primary_10_21468_SciPostPhys_16_4_097
crossref_primary_10_7554_eLife_56532
crossref_primary_10_18632_oncotarget_26800
crossref_primary_10_3390_biology9120481
crossref_primary_10_7554_eLife_61204
crossref_primary_10_1021_acs_analchem_0c04110
crossref_primary_10_1088_1478_3975_abba85
crossref_primary_10_1016_j_jtbi_2019_05_014
crossref_primary_10_1016_j_aanat_2023_152149
crossref_primary_10_18632_oncotarget_23077
crossref_primary_10_1098_rsif_2024_0099
crossref_primary_10_1242_bio_059625
crossref_primary_10_1371_journal_pcbi_1012465
crossref_primary_10_1016_j_jconrel_2018_03_028
crossref_primary_10_1038_s41536_021_00134_2
crossref_primary_10_1186_s12915_023_01636_9
crossref_primary_10_1016_j_niox_2017_02_010
Cites_doi 10.1103/PhysRevLett.94.128701
10.1103/PhysRevE.96.012401
10.1038/nature10984
10.1126/science.1218835
10.1038/nature12777
10.1073/pnas.1106105108
10.1182/blood-2014-12-570200
10.1016/j.stem.2015.04.014
10.1016/S0301-472X(02)00832-9
10.1038/nature02436
10.1016/S0022-5193(05)80330-3
10.1038/nature05574
10.1159/000057688
10.1016/j.stem.2010.05.017
10.1186/jbiol177
10.1242/dev.110.4.1001
10.1016/j.cell.2011.05.033
10.1242/dev.101063
10.1073/pnas.0404782102
10.1006/meth.1998.0593
10.1016/j.mbs.2012.08.004
10.1016/j.tcb.2012.11.006
10.1371/journal.pbio.1000015
10.1126/science.aad7016
10.1242/dev.060103
10.1103/PhysRevE.80.030903
10.1007/BF01013315
10.1016/j.cell.2012.01.002
10.1038/ncb3282
10.1073/pnas.1007809109
10.1103/PhysRevE.77.031907
10.1073/pnas.0611179104
10.1016/j.devcel.2005.12.006
10.1088/1742-5468/2010/07/P07028
10.1016/j.stem.2016.01.001
10.1007/BF01011311
10.1002/bies.200800189
10.1038/ncb2963
10.1021/j100540a008
10.1126/science.1242281
10.1016/j.cell.2016.02.041
10.1038/nature12972
10.2307/3318605
10.1126/science.1196236
10.1002/aja.1001170106
10.1016/j.stem.2014.01.019
10.1126/science.287.5457.1427
10.1016/j.tcb.2014.09.003
10.1038/5007
ContentType Journal Article
Copyright Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright_xml – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1073/pnas.1602779113
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Dynamic heterogeneity in stem cell self-renewal
EISSN 1091-6490
EndPage 7514
ExternalDocumentID PMC4941513
27313213
10_1073_pnas_1602779113
26470717
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_PC_12009
– fundername: Deutsche Forschungsgemeinschaft (DFG)
  grantid: Research Fellowship
– fundername: Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/J017639/1
– fundername: Wellcome Trust
  grantid: 098357/Z/12/Z
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
AFOSN
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c481t-8df5a2a9e3165357a4725c3995c5405e66b241a60bf682b76deee2bf95f5c9503
ISSN 0027-8424
IngestDate Thu Aug 21 18:31:46 EDT 2025
Fri Jul 11 11:14:46 EDT 2025
Sat May 31 02:09:07 EDT 2025
Thu Apr 24 22:53:18 EDT 2025
Tue Jul 01 03:19:16 EDT 2025
Sun Aug 24 12:10:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 27
Keywords clonal dynamics
stem cell fate
stem cell heterogeneity
tissue homeostasis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c481t-8df5a2a9e3165357a4725c3995c5405e66b241a60bf682b76deee2bf95f5c9503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by Roeland Nusse, Stanford University School of Medicine, Stanford, CA, and approved May 9, 2016 (received for review February 23, 2016)
Author contributions: P.G. and B.D.S. designed research; P.G. performed research; P.G. contributed new reagents/analytic tools; and P.G. and B.D.S. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/113/27/7509.full.pdf
PMID 27313213
PQID 1802473203
PQPubID 23479
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4941513
proquest_miscellaneous_1802473203
pubmed_primary_27313213
crossref_primary_10_1073_pnas_1602779113
crossref_citationtrail_10_1073_pnas_1602779113
jstor_primary_26470717
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-05
PublicationDateYYYYMMDD 2016-07-05
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2016
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Strogatz SH (e_1_3_3_50_2) 1994
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
van Kampen NG (e_1_3_3_41_2) 2003
e_1_3_3_4_2
e_1_3_3_22_2
References_xml – ident: e_1_3_3_27_2
  doi: 10.1103/PhysRevLett.94.128701
– ident: e_1_3_3_39_2
  doi: 10.1103/PhysRevE.96.012401
– ident: e_1_3_3_34_2
  doi: 10.1038/nature10984
– ident: e_1_3_3_11_2
  doi: 10.1126/science.1218835
– ident: e_1_3_3_13_2
  doi: 10.1038/nature12777
– volume-title: Nonlinear Dynamics and Chaos
  year: 1994
  ident: e_1_3_3_50_2
– ident: e_1_3_3_43_2
  doi: 10.1073/pnas.1106105108
– ident: e_1_3_3_30_2
  doi: 10.1182/blood-2014-12-570200
– ident: e_1_3_3_22_2
  doi: 10.1016/j.stem.2015.04.014
– ident: e_1_3_3_25_2
  doi: 10.1016/S0301-472X(02)00832-9
– ident: e_1_3_3_12_2
  doi: 10.1038/nature02436
– ident: e_1_3_3_3_2
  doi: 10.1016/S0022-5193(05)80330-3
– ident: e_1_3_3_8_2
  doi: 10.1038/nature05574
– ident: e_1_3_3_24_2
  doi: 10.1159/000057688
– ident: e_1_3_3_10_2
  doi: 10.1016/j.stem.2010.05.017
– ident: e_1_3_3_26_2
  doi: 10.1186/jbiol177
– ident: e_1_3_3_2_2
  doi: 10.1242/dev.110.4.1001
– ident: e_1_3_3_4_2
  doi: 10.1016/j.cell.2011.05.033
– ident: e_1_3_3_21_2
  doi: 10.1242/dev.101063
– ident: e_1_3_3_35_2
  doi: 10.1073/pnas.0404782102
– ident: e_1_3_3_5_2
  doi: 10.1006/meth.1998.0593
– ident: e_1_3_3_37_2
  doi: 10.1016/j.mbs.2012.08.004
– ident: e_1_3_3_33_2
  doi: 10.1016/j.tcb.2012.11.006
– ident: e_1_3_3_36_2
  doi: 10.1371/journal.pbio.1000015
– ident: e_1_3_3_17_2
  doi: 10.1126/science.aad7016
– ident: e_1_3_3_29_2
  doi: 10.1242/dev.060103
– ident: e_1_3_3_31_2
  doi: 10.1103/PhysRevE.80.030903
– ident: e_1_3_3_47_2
  doi: 10.1007/BF01013315
– ident: e_1_3_3_7_2
  doi: 10.1016/j.cell.2012.01.002
– ident: e_1_3_3_14_2
  doi: 10.1038/ncb3282
– ident: e_1_3_3_32_2
  doi: 10.1073/pnas.1007809109
– ident: e_1_3_3_45_2
  doi: 10.1103/PhysRevE.77.031907
– ident: e_1_3_3_38_2
  doi: 10.1073/pnas.0611179104
– ident: e_1_3_3_48_2
  doi: 10.1016/j.devcel.2005.12.006
– ident: e_1_3_3_40_2
  doi: 10.1088/1742-5468/2010/07/P07028
– ident: e_1_3_3_18_2
  doi: 10.1016/j.stem.2016.01.001
– ident: e_1_3_3_46_2
  doi: 10.1007/BF01011311
– ident: e_1_3_3_28_2
  doi: 10.1002/bies.200800189
– ident: e_1_3_3_23_2
  doi: 10.1038/ncb2963
– ident: e_1_3_3_49_2
  doi: 10.1021/j100540a008
– ident: e_1_3_3_15_2
  doi: 10.1126/science.1242281
– ident: e_1_3_3_44_2
  doi: 10.1016/j.cell.2016.02.041
– ident: e_1_3_3_19_2
  doi: 10.1038/nature12972
– ident: e_1_3_3_51_2
  doi: 10.2307/3318605
– ident: e_1_3_3_9_2
  doi: 10.1126/science.1196236
– ident: e_1_3_3_42_2
  doi: 10.1002/aja.1001170106
– ident: e_1_3_3_20_2
  doi: 10.1016/j.stem.2014.01.019
– ident: e_1_3_3_1_2
  doi: 10.1126/science.287.5457.1427
– volume-title: Stochastic Processes in Physics and Chemistry
  year: 2003
  ident: e_1_3_3_41_2
– ident: e_1_3_3_16_2
  doi: 10.1016/j.tcb.2014.09.003
– ident: e_1_3_3_6_2
  doi: 10.1038/5007
SSID ssj0009580
Score 2.4186068
Snippet To maintain cycling adult tissue in homeostasis the balance between proliferation and differentiation of stem cells needs to be precisely regulated. To...
In many tissues, such as intestine and skin, cells are constantly turned over throughout life. To replenish cells that are lost, new cells are generated by...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7509
SubjectTerms Animals
Biological Sciences
Cell Self Renewal
Models, Biological
Title Dynamic heterogeneity as a strategy of stem cell self-renewal
URI https://www.jstor.org/stable/26470717
https://www.ncbi.nlm.nih.gov/pubmed/27313213
https://www.proquest.com/docview/1802473203
https://pubmed.ncbi.nlm.nih.gov/PMC4941513
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgXLigDRiUATISh6Eoo3EcOzkO2A-hUXZopd4i23XEUJWipRUSfz3vxXaSjiENLlGU2G7l7-Xl84vf9wh5yxkz-UIX8YIrHnOhRaxsamKkvwlXRqcK852_TMT5jH-eZ_NQaNxnl6z1kfl1a17J_6AK1wBXzJL9B2S7QeECnAO-cASE4XgnjD-5cvLA9mB2VtDMIqdWTaSixqnOtt_PUas5wgh91NhlFaOI5U8_tKell91rrAmbBiYhSnjc55x4R9BEcXQ56SsYn13bzfLKDAI0XdwGLMER9Q-2_g7_tfY7jH2cIRHtnlT3wdk63wjUIhbcVffsnKfLJPVW4tL8vS9ELjJ4r8rMZYv-4bPByWCh4Vo1GOpiUhZh0C117MnX8nR2cVFOT-bT--QBtGNYseJsngxElvNxkG-S6fsbQ24xD7f59LZlxc3dsQO6Md0lj_w6gR470PfIPVs_JnsBAHro5cLfPSHBCuiWFVDVUEWDFdBVRdEKKFoBHVrBUzI7PZl-PI99UYzY8DxZx_miyhRThU0TkaWZVFyyzGCCskHybYXQQMqUGOtK5ExLsbDWMl0VWZWZIhun-2SnXtX2OaFAlrWG5aVm2nBYNsKTKTWzhUwlt0KZETkKE1YarxiPhUuWZbtzQaYlznDZz_CIHHYdfjixlL833W8R6NoBMZcYWxiRNwGSEjwdTouq7WoDnXPgkzJlY-j8zEHU95YoQYrDyi3wugaoor59p7761qqp8wI4bJK-uMPvHpCH_ZPxkuysrzf2FXDStX7dGuJvYuCPBQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+heterogeneity+as+a+strategy+of+stem+cell+self-renewal&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Greulich%2C+Philip&rft.au=Simons%2C+Benjamin+D&rft.date=2016-07-05&rft.eissn=1091-6490&rft.volume=113&rft.issue=27&rft.spage=7509&rft.epage=7514&rft_id=info:doi/10.1073%2Fpnas.1602779113&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon