Dynamic heterogeneity as a strategy of stem cell self-renewal
To maintain cycling adult tissue in homeostasis the balance between proliferation and differentiation of stem cells needs to be precisely regulated. To investigate how stem cells achieve perfect self-renewal, emphasis has been placed on models in which stem cells progress sequentially through a one-...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 113; no. 27; pp. 7509 - 7514 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
05.07.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 |
DOI | 10.1073/pnas.1602779113 |
Cover
Loading…
Abstract | To maintain cycling adult tissue in homeostasis the balance between proliferation and differentiation of stem cells needs to be precisely regulated. To investigate how stem cells achieve perfect self-renewal, emphasis has been placed on models in which stem cells progress sequentially through a one-way proliferative hierarchy. However, investigations of tissue regeneration have revealed a surprising degree of flexibility, with cells normally committed to differentiation able to recover stem cell competence following injury. Here, we investigate whether the reversible transfer of cells between states poised for proliferation or differentiation may provide a viable mechanism for a heterogeneous stem cell population to maintain homeostasis even under normal physiological conditions. By addressing the clonal dynamics, we show that such models of “dynamic heterogeneity” may be equally capable of describing the results of recent lineage tracing assays involving epithelial tissues. Moreover, together with competition for limited niche access, such models may provide a mechanism to render tissue homeostasis robust. In particular, in 2D epithelial layers, we show that the mechanism of dynamic heterogeneity avoids some pathological dependencies that undermine models based on a hierarchical stem/progenitor organization. |
---|---|
AbstractList | To maintain cycling adult tissue in homeostasis the balance between proliferation and differentiation of stem cells needs to be precisely regulated. To investigate how stem cells achieve perfect self-renewal, emphasis has been placed on models in which stem cells progress sequentially through a one-way proliferative hierarchy. However, investigations of tissue regeneration have revealed a surprising degree of flexibility, with cells normally committed to differentiation able to recover stem cell competence following injury. Here, we investigate whether the reversible transfer of cells between states poised for proliferation or differentiation may provide a viable mechanism for a heterogeneous stem cell population to maintain homeostasis even under normal physiological conditions. By addressing the clonal dynamics, we show that such models of "dynamic heterogeneity" may be equally capable of describing the results of recent lineage tracing assays involving epithelial tissues. Moreover, together with competition for limited niche access, such models may provide a mechanism to render tissue homeostasis robust. In particular, in 2D epithelial layers, we show that the mechanism of dynamic heterogeneity avoids some pathological dependencies that undermine models based on a hierarchical stem/progenitor organization. In many tissues, such as intestine and skin, cells are constantly turned over throughout life. To replenish cells that are lost, new cells are generated by stem cells, which divide and differentiate to maintain tissue in a steady state. The mechanisms that allow stem cells to achieve perfect self-renewal promise fundamental insights into processes leading to diseased states. Efforts to define strategies of stem cell self-renewal have placed emphasis on models in which stem cells progress one way through a differentiation hierarchy. Here, we show that a different paradigm, in which stem cells transfer reversibly between states primed for renewal or poised for differentiation, offers a viable and robust mechanism of tissue self-renewal. To maintain cycling adult tissue in homeostasis the balance between proliferation and differentiation of stem cells needs to be precisely regulated. To investigate how stem cells achieve perfect self-renewal, emphasis has been placed on models in which stem cells progress sequentially through a one-way proliferative hierarchy. However, investigations of tissue regeneration have revealed a surprising degree of flexibility, with cells normally committed to differentiation able to recover stem cell competence following injury. Here, we investigate whether the reversible transfer of cells between states poised for proliferation or differentiation may provide a viable mechanism for a heterogeneous stem cell population to maintain homeostasis even under normal physiological conditions. By addressing the clonal dynamics, we show that such models of “dynamic heterogeneity” may be equally capable of describing the results of recent lineage tracing assays involving epithelial tissues. Moreover, together with competition for limited niche access, such models may provide a mechanism to render tissue homeostasis robust. In particular, in 2D epithelial layers, we show that the mechanism of dynamic heterogeneity avoids some pathological dependencies that undermine models based on a hierarchical stem/progenitor organization. |
Author | Simons, Benjamin D. Greulich, Philip |
Author_xml | – sequence: 1 givenname: Philip surname: Greulich fullname: Greulich, Philip organization: Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, United Kingdom – sequence: 2 givenname: Benjamin D. surname: Simons fullname: Simons, Benjamin D. organization: Wellcome Trust/Medical Research Council Stem Cell Institute, Cambridge CB2 1QR, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27313213$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtP3DAUha2Kqgy0a1ZFWbIJ-PoZL1qpok8JiQ2sLcdzMxgl8WB7iubfN9HwKgtWtuzvnHvsc0D2xjgiIUdAT4FqfrYeXT4FRZnWBoC_IwugBmolDN0jCzqd141gYp8c5HxLKTWyoR_IPtMcOAO-IF--b0c3BF_dYMEUVzhiKNvK5cpVuSRXcLWtYjftcag89n2Vse_qNHH3rv9I3neuz_jpYT0k1z9_XJ3_ri8uf_05_3ZRe9FAqZtlJx1zBjkoyaV2QjPpuTHSS0ElKtUyAU7RtlMNa7VaIiJrOyM76Y2k_JB83fmuN-2AS4_jFK236xQGl7Y2umD_vxnDjV3Fv1YYARL4ZHDyYJDi3QZzsUPI83PciHGTLTSUCc0ZndHjl7Oehjz-2QSc7QCfYs4JuycEqJ1bsXMr9rmVSSFfKXworoQ4hw39G7rPO91tLjE9J1FCUw2a_wOKuJsA |
CitedBy_id | crossref_primary_10_1177_2472555216682725 crossref_primary_10_1016_j_coisb_2017_08_001 crossref_primary_10_1016_j_cois_2019_11_003 crossref_primary_10_1016_j_stem_2021_03_014 crossref_primary_10_1016_j_stemcr_2018_05_005 crossref_primary_10_1039_D0MO00085J crossref_primary_10_1098_rsos_191090 crossref_primary_10_53065_kaznmu_2022_16_11_012 crossref_primary_10_1007_s40778_023_00230_7 crossref_primary_10_7554_eLife_20357 crossref_primary_10_1088_1367_2630_aac2ad crossref_primary_10_1007_s00285_024_02057_0 crossref_primary_10_1242_dev_202796 crossref_primary_10_1371_journal_pone_0236519 crossref_primary_10_1073_pnas_1816100116 crossref_primary_10_1002_biot_201900314 crossref_primary_10_1038_s41598_022_12717_0 crossref_primary_10_1088_1478_3975_aba041 crossref_primary_10_1038_s41598_024_51386_z crossref_primary_10_1016_j_jtbi_2020_110196 crossref_primary_10_3389_fcell_2024_1310265 crossref_primary_10_1016_j_mce_2016_12_008 crossref_primary_10_21468_SciPostPhys_16_4_097 crossref_primary_10_7554_eLife_56532 crossref_primary_10_18632_oncotarget_26800 crossref_primary_10_3390_biology9120481 crossref_primary_10_7554_eLife_61204 crossref_primary_10_1021_acs_analchem_0c04110 crossref_primary_10_1088_1478_3975_abba85 crossref_primary_10_1016_j_jtbi_2019_05_014 crossref_primary_10_1016_j_aanat_2023_152149 crossref_primary_10_18632_oncotarget_23077 crossref_primary_10_1098_rsif_2024_0099 crossref_primary_10_1242_bio_059625 crossref_primary_10_1371_journal_pcbi_1012465 crossref_primary_10_1016_j_jconrel_2018_03_028 crossref_primary_10_1038_s41536_021_00134_2 crossref_primary_10_1186_s12915_023_01636_9 crossref_primary_10_1016_j_niox_2017_02_010 |
Cites_doi | 10.1103/PhysRevLett.94.128701 10.1103/PhysRevE.96.012401 10.1038/nature10984 10.1126/science.1218835 10.1038/nature12777 10.1073/pnas.1106105108 10.1182/blood-2014-12-570200 10.1016/j.stem.2015.04.014 10.1016/S0301-472X(02)00832-9 10.1038/nature02436 10.1016/S0022-5193(05)80330-3 10.1038/nature05574 10.1159/000057688 10.1016/j.stem.2010.05.017 10.1186/jbiol177 10.1242/dev.110.4.1001 10.1016/j.cell.2011.05.033 10.1242/dev.101063 10.1073/pnas.0404782102 10.1006/meth.1998.0593 10.1016/j.mbs.2012.08.004 10.1016/j.tcb.2012.11.006 10.1371/journal.pbio.1000015 10.1126/science.aad7016 10.1242/dev.060103 10.1103/PhysRevE.80.030903 10.1007/BF01013315 10.1016/j.cell.2012.01.002 10.1038/ncb3282 10.1073/pnas.1007809109 10.1103/PhysRevE.77.031907 10.1073/pnas.0611179104 10.1016/j.devcel.2005.12.006 10.1088/1742-5468/2010/07/P07028 10.1016/j.stem.2016.01.001 10.1007/BF01011311 10.1002/bies.200800189 10.1038/ncb2963 10.1021/j100540a008 10.1126/science.1242281 10.1016/j.cell.2016.02.041 10.1038/nature12972 10.2307/3318605 10.1126/science.1196236 10.1002/aja.1001170106 10.1016/j.stem.2014.01.019 10.1126/science.287.5457.1427 10.1016/j.tcb.2014.09.003 10.1038/5007 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles |
Copyright_xml | – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1073/pnas.1602779113 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Dynamic heterogeneity in stem cell self-renewal |
EISSN | 1091-6490 |
EndPage | 7514 |
ExternalDocumentID | PMC4941513 27313213 10_1073_pnas_1602779113 26470717 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MC_PC_12009 – fundername: Deutsche Forschungsgemeinschaft (DFG) grantid: Research Fellowship – fundername: Engineering and Physical Sciences Research Council (EPSRC) grantid: EP/J017639/1 – fundername: Wellcome Trust grantid: 098357/Z/12/Z |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX AFOSN CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c481t-8df5a2a9e3165357a4725c3995c5405e66b241a60bf682b76deee2bf95f5c9503 |
ISSN | 0027-8424 |
IngestDate | Thu Aug 21 18:31:46 EDT 2025 Fri Jul 11 11:14:46 EDT 2025 Sat May 31 02:09:07 EDT 2025 Thu Apr 24 22:53:18 EDT 2025 Tue Jul 01 03:19:16 EDT 2025 Sun Aug 24 12:10:33 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Keywords | clonal dynamics stem cell fate stem cell heterogeneity tissue homeostasis |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c481t-8df5a2a9e3165357a4725c3995c5405e66b241a60bf682b76deee2bf95f5c9503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by Roeland Nusse, Stanford University School of Medicine, Stanford, CA, and approved May 9, 2016 (received for review February 23, 2016) Author contributions: P.G. and B.D.S. designed research; P.G. performed research; P.G. contributed new reagents/analytic tools; and P.G. and B.D.S. wrote the paper. |
OpenAccessLink | https://www.pnas.org/content/pnas/113/27/7509.full.pdf |
PMID | 27313213 |
PQID | 1802473203 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4941513 proquest_miscellaneous_1802473203 pubmed_primary_27313213 crossref_primary_10_1073_pnas_1602779113 crossref_citationtrail_10_1073_pnas_1602779113 jstor_primary_26470717 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-07-05 |
PublicationDateYYYYMMDD | 2016-07-05 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2016 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | Strogatz SH (e_1_3_3_50_2) 1994 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 van Kampen NG (e_1_3_3_41_2) 2003 e_1_3_3_4_2 e_1_3_3_22_2 |
References_xml | – ident: e_1_3_3_27_2 doi: 10.1103/PhysRevLett.94.128701 – ident: e_1_3_3_39_2 doi: 10.1103/PhysRevE.96.012401 – ident: e_1_3_3_34_2 doi: 10.1038/nature10984 – ident: e_1_3_3_11_2 doi: 10.1126/science.1218835 – ident: e_1_3_3_13_2 doi: 10.1038/nature12777 – volume-title: Nonlinear Dynamics and Chaos year: 1994 ident: e_1_3_3_50_2 – ident: e_1_3_3_43_2 doi: 10.1073/pnas.1106105108 – ident: e_1_3_3_30_2 doi: 10.1182/blood-2014-12-570200 – ident: e_1_3_3_22_2 doi: 10.1016/j.stem.2015.04.014 – ident: e_1_3_3_25_2 doi: 10.1016/S0301-472X(02)00832-9 – ident: e_1_3_3_12_2 doi: 10.1038/nature02436 – ident: e_1_3_3_3_2 doi: 10.1016/S0022-5193(05)80330-3 – ident: e_1_3_3_8_2 doi: 10.1038/nature05574 – ident: e_1_3_3_24_2 doi: 10.1159/000057688 – ident: e_1_3_3_10_2 doi: 10.1016/j.stem.2010.05.017 – ident: e_1_3_3_26_2 doi: 10.1186/jbiol177 – ident: e_1_3_3_2_2 doi: 10.1242/dev.110.4.1001 – ident: e_1_3_3_4_2 doi: 10.1016/j.cell.2011.05.033 – ident: e_1_3_3_21_2 doi: 10.1242/dev.101063 – ident: e_1_3_3_35_2 doi: 10.1073/pnas.0404782102 – ident: e_1_3_3_5_2 doi: 10.1006/meth.1998.0593 – ident: e_1_3_3_37_2 doi: 10.1016/j.mbs.2012.08.004 – ident: e_1_3_3_33_2 doi: 10.1016/j.tcb.2012.11.006 – ident: e_1_3_3_36_2 doi: 10.1371/journal.pbio.1000015 – ident: e_1_3_3_17_2 doi: 10.1126/science.aad7016 – ident: e_1_3_3_29_2 doi: 10.1242/dev.060103 – ident: e_1_3_3_31_2 doi: 10.1103/PhysRevE.80.030903 – ident: e_1_3_3_47_2 doi: 10.1007/BF01013315 – ident: e_1_3_3_7_2 doi: 10.1016/j.cell.2012.01.002 – ident: e_1_3_3_14_2 doi: 10.1038/ncb3282 – ident: e_1_3_3_32_2 doi: 10.1073/pnas.1007809109 – ident: e_1_3_3_45_2 doi: 10.1103/PhysRevE.77.031907 – ident: e_1_3_3_38_2 doi: 10.1073/pnas.0611179104 – ident: e_1_3_3_48_2 doi: 10.1016/j.devcel.2005.12.006 – ident: e_1_3_3_40_2 doi: 10.1088/1742-5468/2010/07/P07028 – ident: e_1_3_3_18_2 doi: 10.1016/j.stem.2016.01.001 – ident: e_1_3_3_46_2 doi: 10.1007/BF01011311 – ident: e_1_3_3_28_2 doi: 10.1002/bies.200800189 – ident: e_1_3_3_23_2 doi: 10.1038/ncb2963 – ident: e_1_3_3_49_2 doi: 10.1021/j100540a008 – ident: e_1_3_3_15_2 doi: 10.1126/science.1242281 – ident: e_1_3_3_44_2 doi: 10.1016/j.cell.2016.02.041 – ident: e_1_3_3_19_2 doi: 10.1038/nature12972 – ident: e_1_3_3_51_2 doi: 10.2307/3318605 – ident: e_1_3_3_9_2 doi: 10.1126/science.1196236 – ident: e_1_3_3_42_2 doi: 10.1002/aja.1001170106 – ident: e_1_3_3_20_2 doi: 10.1016/j.stem.2014.01.019 – ident: e_1_3_3_1_2 doi: 10.1126/science.287.5457.1427 – volume-title: Stochastic Processes in Physics and Chemistry year: 2003 ident: e_1_3_3_41_2 – ident: e_1_3_3_16_2 doi: 10.1016/j.tcb.2014.09.003 – ident: e_1_3_3_6_2 doi: 10.1038/5007 |
SSID | ssj0009580 |
Score | 2.4186068 |
Snippet | To maintain cycling adult tissue in homeostasis the balance between proliferation and differentiation of stem cells needs to be precisely regulated. To... In many tissues, such as intestine and skin, cells are constantly turned over throughout life. To replenish cells that are lost, new cells are generated by... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7509 |
SubjectTerms | Animals Biological Sciences Cell Self Renewal Models, Biological |
Title | Dynamic heterogeneity as a strategy of stem cell self-renewal |
URI | https://www.jstor.org/stable/26470717 https://www.ncbi.nlm.nih.gov/pubmed/27313213 https://www.proquest.com/docview/1802473203 https://pubmed.ncbi.nlm.nih.gov/PMC4941513 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgXLigDRiUATISh6Eoo3EcOzkO2A-hUXZopd4i23XEUJWipRUSfz3vxXaSjiENLlGU2G7l7-Xl84vf9wh5yxkz-UIX8YIrHnOhRaxsamKkvwlXRqcK852_TMT5jH-eZ_NQaNxnl6z1kfl1a17J_6AK1wBXzJL9B2S7QeECnAO-cASE4XgnjD-5cvLA9mB2VtDMIqdWTaSixqnOtt_PUas5wgh91NhlFaOI5U8_tKell91rrAmbBiYhSnjc55x4R9BEcXQ56SsYn13bzfLKDAI0XdwGLMER9Q-2_g7_tfY7jH2cIRHtnlT3wdk63wjUIhbcVffsnKfLJPVW4tL8vS9ELjJ4r8rMZYv-4bPByWCh4Vo1GOpiUhZh0C117MnX8nR2cVFOT-bT--QBtGNYseJsngxElvNxkG-S6fsbQ24xD7f59LZlxc3dsQO6Md0lj_w6gR470PfIPVs_JnsBAHro5cLfPSHBCuiWFVDVUEWDFdBVRdEKKFoBHVrBUzI7PZl-PI99UYzY8DxZx_miyhRThU0TkaWZVFyyzGCCskHybYXQQMqUGOtK5ExLsbDWMl0VWZWZIhun-2SnXtX2OaFAlrWG5aVm2nBYNsKTKTWzhUwlt0KZETkKE1YarxiPhUuWZbtzQaYlznDZz_CIHHYdfjixlL833W8R6NoBMZcYWxiRNwGSEjwdTouq7WoDnXPgkzJlY-j8zEHU95YoQYrDyi3wugaoor59p7761qqp8wI4bJK-uMPvHpCH_ZPxkuysrzf2FXDStX7dGuJvYuCPBQ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+heterogeneity+as+a+strategy+of+stem+cell+self-renewal&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Greulich%2C+Philip&rft.au=Simons%2C+Benjamin+D&rft.date=2016-07-05&rft.eissn=1091-6490&rft.volume=113&rft.issue=27&rft.spage=7509&rft.epage=7514&rft_id=info:doi/10.1073%2Fpnas.1602779113&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |