Linkage between N2O emission and functional gene abundance in an intensively managed calcareous fluvo-aquic soil
The linkage between N 2 O emissions and the abundance of nitrifier and denitrifier genes is unclear in the intensively managed calcareous fluvo-aquic soils of the North China Plain. We investigated the abundance of bacterial amoA for nitrification and narG, nirS, nirK , and nosZ for denitrification...
Saved in:
Published in | Scientific reports Vol. 7; no. 1; p. 43283 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
24.02.2017
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The linkage between N
2
O emissions and the abundance of nitrifier and denitrifier genes is unclear in the intensively managed calcareous fluvo-aquic soils of the North China Plain. We investigated the abundance of bacterial
amoA
for nitrification and
narG, nirS, nirK
, and
nosZ
for denitrification by
in situ
soil sampling to determine how the abundance of these genes changes instantly during N fertilization events and is related to high N
2
O emission peaks. We also investigated how long-term incorporated straw and/or manure affect(s) the abundance of these genes based on a seven-year field experiment. The overall results demonstrate that the long-term application of urea-based fertilizer and/or manure significantly enhanced the number of bacterial
amoA
gene copies leading to high N
2
O emission peaks after N fertilizer applications. These peaks contributed greatly to the annual N
2
O emissions in the crop rotation. A significant correlation between annual N
2
O emissions and
narG, nirS
, and
nirK
gene numbers indicates that the abundance of these genes is related to N
2
O emission under conditions for denitrification, thus partly contributing to the annual N
2
O emissions. These findings will help to draw up appropriate measures for mitigation of N
2
O emissions in this ‘hotspot’ region. |
---|---|
AbstractList | The linkage between N
2
O emissions and the abundance of nitrifier and denitrifier genes is unclear in the intensively managed calcareous fluvo-aquic soils of the North China Plain. We investigated the abundance of bacterial
amoA
for nitrification and
narG, nirS, nirK
, and
nosZ
for denitrification by
in situ
soil sampling to determine how the abundance of these genes changes instantly during N fertilization events and is related to high N
2
O emission peaks. We also investigated how long-term incorporated straw and/or manure affect(s) the abundance of these genes based on a seven-year field experiment. The overall results demonstrate that the long-term application of urea-based fertilizer and/or manure significantly enhanced the number of bacterial
amoA
gene copies leading to high N
2
O emission peaks after N fertilizer applications. These peaks contributed greatly to the annual N
2
O emissions in the crop rotation. A significant correlation between annual N
2
O emissions and
narG, nirS
, and
nirK
gene numbers indicates that the abundance of these genes is related to N
2
O emission under conditions for denitrification, thus partly contributing to the annual N
2
O emissions. These findings will help to draw up appropriate measures for mitigation of N
2
O emissions in this ‘hotspot’ region. The linkage between N2O emissions and the abundance of nitrifier and denitrifier genes is unclear in the intensively managed calcareous fluvo-aquic soils of the North China Plain. We investigated the abundance of bacterial amoA for nitrification and narG, nirS, nirK, and nosZ for denitrification by in situ soil sampling to determine how the abundance of these genes changes instantly during N fertilization events and is related to high N2O emission peaks. We also investigated how long-term incorporated straw and/or manure affect(s) the abundance of these genes based on a seven-year field experiment. The overall results demonstrate that the long-term application of urea-based fertilizer and/or manure significantly enhanced the number of bacterial amoA gene copies leading to high N2O emission peaks after N fertilizer applications. These peaks contributed greatly to the annual N2O emissions in the crop rotation. A significant correlation between annual N2O emissions and narG, nirS, and nirK gene numbers indicates that the abundance of these genes is related to N2O emission under conditions for denitrification, thus partly contributing to the annual N2O emissions. These findings will help to draw up appropriate measures for mitigation of N2O emissions in this 'hotspot' region.The linkage between N2O emissions and the abundance of nitrifier and denitrifier genes is unclear in the intensively managed calcareous fluvo-aquic soils of the North China Plain. We investigated the abundance of bacterial amoA for nitrification and narG, nirS, nirK, and nosZ for denitrification by in situ soil sampling to determine how the abundance of these genes changes instantly during N fertilization events and is related to high N2O emission peaks. We also investigated how long-term incorporated straw and/or manure affect(s) the abundance of these genes based on a seven-year field experiment. The overall results demonstrate that the long-term application of urea-based fertilizer and/or manure significantly enhanced the number of bacterial amoA gene copies leading to high N2O emission peaks after N fertilizer applications. These peaks contributed greatly to the annual N2O emissions in the crop rotation. A significant correlation between annual N2O emissions and narG, nirS, and nirK gene numbers indicates that the abundance of these genes is related to N2O emission under conditions for denitrification, thus partly contributing to the annual N2O emissions. These findings will help to draw up appropriate measures for mitigation of N2O emissions in this 'hotspot' region. The linkage between N2 O emissions and the abundance of nitrifier and denitrifier genes is unclear in the intensively managed calcareous fluvo-aquic soils of the North China Plain. We investigated the abundance of bacterial amoA for nitrification and narG, nirS, nirK, and nosZ for denitrification by in situ soil sampling to determine how the abundance of these genes changes instantly during N fertilization events and is related to high N2 O emission peaks. We also investigated how long-term incorporated straw and/or manure affect(s) the abundance of these genes based on a seven-year field experiment. The overall results demonstrate that the long-term application of urea-based fertilizer and/or manure significantly enhanced the number of bacterial amoA gene copies leading to high N2 O emission peaks after N fertilizer applications. These peaks contributed greatly to the annual N2 O emissions in the crop rotation. A significant correlation between annual N2 O emissions and narG, nirS, and nirK gene numbers indicates that the abundance of these genes is related to N2 O emission under conditions for denitrification, thus partly contributing to the annual N2 O emissions. These findings will help to draw up appropriate measures for mitigation of N2 O emissions in this 'hotspot' region. |
ArticleNumber | 43283 |
Author | Zhang, Xiaojun Yang, Liuqing Ju, Xiaotang |
Author_xml | – sequence: 1 givenname: Liuqing surname: Yang fullname: Yang, Liuqing organization: College of Resources and Environmental Sciences, China Agricultural University – sequence: 2 givenname: Xiaojun surname: Zhang fullname: Zhang, Xiaojun email: xjzhang68@sjtu.edu.cn organization: State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiaotong University – sequence: 3 givenname: Xiaotang surname: Ju fullname: Ju, Xiaotang email: juxt@cau.edu.cn organization: College of Resources and Environmental Sciences, China Agricultural University |
BookMark | eNptkd9vFCEQx4lpY3_YB_8DEl-0ydplgFv2xcQ0rZpc7Is-k1l29qRycF12z_S_l8tVU2tJYCB85svwnRN2EFMkxl6L-r2opbnII22UBCNfsGOola5AAhw82h-xs5xv6zI0tEq0L9kRGJCyzGO2Wfr4E1fEO5p-EUX-FW44rX3OPkWOsefDHN1UDhj4iiJx7ObYY3TE_Q4o60Qx-y2Fe77GWLR67jA4HCnNmQ9h3qYK72bveE4-vGKHA4ZMZw_xlH2_vvp2-bla3nz6cvlxWTllxFQ1poaOOtMr0xs3CNVopRHcom6boV20gAZEh6SdEs50w2BkB7QQsoEFtULLU_Zhr7uZuzX1juI0YrCb0a9xvLcJvf33JvofdpW2VktQQkIRePsgMKa7mfJkiyuOQsC4-5gVpgHdGC1kQd88QW_TPBbHCtXWogEldVOoiz3lxpRL1wbr_IQ7a8v7PlhR211D7d-Glox3TzL-lP8ce75nc2HiisZHNfwH_wYBjrFe |
CitedBy_id | crossref_primary_10_1016_j_biortech_2023_129697 crossref_primary_10_1007_s10705_021_10166_1 crossref_primary_10_1016_j_eja_2023_127025 crossref_primary_10_1016_j_soilbio_2021_108539 crossref_primary_10_3390_microorganisms9050983 crossref_primary_10_1016_j_envpol_2019_113901 crossref_primary_10_1016_j_soilbio_2019_02_006 crossref_primary_10_1016_j_agee_2022_108217 crossref_primary_10_1007_s11104_024_06731_6 crossref_primary_10_1021_acs_est_3c10833 crossref_primary_10_1021_acs_est_9b03089 crossref_primary_10_1080_03650340_2021_2001455 crossref_primary_10_1007_s42729_021_00651_5 crossref_primary_10_1016_j_scitotenv_2021_150670 crossref_primary_10_1016_j_sjbs_2021_04_074 crossref_primary_10_1016_j_scitotenv_2017_08_258 crossref_primary_10_1016_S2095_3119_17_61673_3 crossref_primary_10_1007_s00248_022_02085_7 crossref_primary_10_1016_j_agee_2023_108508 crossref_primary_10_1016_j_scitotenv_2023_166284 crossref_primary_10_3390_agriculture12050723 crossref_primary_10_1016_j_agee_2023_108365 crossref_primary_10_1016_j_scitotenv_2021_149933 crossref_primary_10_1016_j_agee_2022_108166 crossref_primary_10_1016_j_ecoleng_2020_105906 crossref_primary_10_1016_j_still_2019_104347 crossref_primary_10_1007_s00253_021_11555_w crossref_primary_10_1016_j_scitotenv_2022_157043 crossref_primary_10_3389_fmicb_2019_01125 crossref_primary_10_1007_s00374_018_1293_6 crossref_primary_10_1007_s00374_020_01462_z crossref_primary_10_1016_j_apsoil_2019_103395 crossref_primary_10_1016_j_scitotenv_2021_151402 crossref_primary_10_1038_s41598_022_07753_9 crossref_primary_10_1016_j_gecco_2021_e01937 crossref_primary_10_1002_saj2_20656 crossref_primary_10_1080_00380768_2022_2087198 crossref_primary_10_1007_s12010_020_03250_9 crossref_primary_10_1039_D1RA09008A crossref_primary_10_1007_s13157_019_01225_z crossref_primary_10_1111_gcbb_12519 crossref_primary_10_1016_j_still_2021_105169 crossref_primary_10_1186_s40793_024_00643_9 crossref_primary_10_1016_j_wasman_2019_01_042 crossref_primary_10_1007_s11368_019_02524_y crossref_primary_10_1007_s11368_021_02878_2 crossref_primary_10_1111_gcb_17082 crossref_primary_10_3390_agronomy13102504 crossref_primary_10_4014_jmb_2007_07012 crossref_primary_10_1016_j_apsoil_2019_103380 crossref_primary_10_1111_1462_2920_14555 crossref_primary_10_3389_fmicb_2022_844663 |
Cites_doi | 10.1128/AEM.65.4.1652-1657.1999 10.1016/j.tim.2012.08.001 10.5194/bg-8-3011-2011 10.1128/AEM.66.12.5488-5491.2000 10.1016/j.mimet.2004.07.002 10.1016/j.soilbio.2012.01.007 10.1038/ismej.2011.5 10.1111/j.1462-2920.2009.01891.x 10.1023/A:1009798022569 10.1128/aem.63.12.4704-4712.1997 10.1016/j.envpol.2013.01.040 10.1890/1051-0761(2006)016[2143:ECODCA]2.0.CO;2 10.2134/jeq2000.00472425002900060003x 10.5194/bg-10-7897-2013 10.1098/rstb.2013.0122 10.1016/j.cosust.2011.08.011 10.1128/AEM.00439-06 10.2136/sssaj2011.0152 10.1016/j.fcr.2011.08.002 10.1016/j.soilbio.2013.07.015 10.1038/ngeo613 10.1016/0038-0717(95)00119-0 10.2136/sssaj2011.0156 10.1007/BF02205580 10.1038/nature16946 10.1128/AEM.00231-06 10.1126/science.1176985 10.1111/j.1462-2920.2008.01578.x 10.1016/B978-0-12-387046-9.00002-5 10.1016/j.fcr.2014.02.014 10.1016/j.scitotenv.2013.11.003 10.1016/S0038-0717(01)00096-7 10.1016/j.agee.2009.04.021 10.1002/rcm.2191 10.1128/AEM.01536-06 10.1065/jss2008.01.270 10.1073/pnas.0813417106 10.1007/s00374-011-0553-5 10.1021/es5018027 10.1016/j.agee.2015.01.020 10.1016/j.scitotenv.2006.12.026 10.1046/j.1365-2486.2003.00654.x 10.1099/00221287-148-1-257 10.1098/rstb.2011.0314 10.2136/sssabookser5.2.c42 10.1016/j.still.2008.08.004 10.1038/srep03950 10.1111/j.1365-2389.2010.01270.x 10.1016/j.soilbio.2012.08.003 10.1890/120062 10.1128/AEM.00643-07 10.2136/sssaj1995.03615995005900030044x 10.1016/j.agee.2013.06.016 10.1007/s00374-015-1001-8 10.1016/j.soilbio.2009.11.019 10.1073/pnas.1219993110 10.1016/j.cosust.2011.08.004 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Copyright Nature Publishing Group Feb 2017 Copyright © 2017, The Author(s) 2017 The Author(s) |
Copyright_xml | – notice: The Author(s) 2017 – notice: Copyright Nature Publishing Group Feb 2017 – notice: Copyright © 2017, The Author(s) 2017 The Author(s) |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/srep43283 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Proquest Health and Medical Complete ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
ExternalDocumentID | PMC5324132 10_1038_srep43283 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c481t-7802beb8d48d8cf147545a2c6097f9692a821bae5c41c8bff83b2e613726e9153 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 14:07:33 EDT 2025 Thu Jul 10 17:20:03 EDT 2025 Wed Aug 13 06:32:33 EDT 2025 Thu Apr 24 23:11:25 EDT 2025 Tue Jul 01 04:02:49 EDT 2025 Fri Feb 21 02:40:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-7802beb8d48d8cf147545a2c6097f9692a821bae5c41c8bff83b2e613726e9153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/srep43283 |
PMID | 28233823 |
PQID | 1901724357 |
PQPubID | 2041939 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5324132 proquest_miscellaneous_1872578513 proquest_journals_1901724357 crossref_citationtrail_10_1038_srep43283 crossref_primary_10_1038_srep43283 springer_journals_10_1038_srep43283 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-24 |
PublicationDateYYYYMMDD | 2017-02-24 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | ChuHCommunity structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soilAppl. Environ. Microbiol.2007734854911:CAS:528:DC%2BD2sXhtFCqsro%3D17098920 XiaWAutotrophic growth of nitrifying community in an agricultural soilISME J.20115122612361:CAS:528:DC%2BC3MXnvVaqsLs%3D213263373146291 HenrySBruDStresBHalletSPhilippotLQuantitative Detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soilsAppl. Environ. Microbiol.200672518151891:CAS:528:DC%2BD28XosVKmu7g%3D168852631538733 VentereaRTRolstonDEMechanistic modeling of nitrite accumulation and nitrogen oxide gas emissions during nitrificationJ. Environ. Qual200029174117511:CAS:528:DC%2BD3cXosVGktrk%3D KoolDMNitrifier denitrification can be a source of N2O from soil: a revised approach to the dual-isotope labelling methodEur. J. Soil Sci2010617597721:CAS:528:DC%2BC3cXhtlCrur3O BrakerGConradRDiversity, structure, and size of N2O-producing microbial communities in soils--what matters for their functioning?Adv. Appl. Microbiol20117533701:CAS:528:DC%2BC3MXht12isb%2FM21807245 Solomon, S. et al. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) 33–34 (Cambridge University Press, Cambridge, 2007). Butterbach-BahlKDannenmannMDenitrification and associated soil N2O emissions due to agricultural activities in a changing climateCurr. Opin. Environ. Sustain20113389395 YanGXTwo-year simultaneous records of N2O and NO fluxes from a farmed cropland in the northern China plain with a reduced nitrogen addition rate by one-thirdAgric. Ecosyst. Environ201317839501:CAS:528:DC%2BC3sXhsVKkt77I ZhouFA new high-resolution N2O emission inventory for China in 2008Environ. Sci. Technol201448853885471:CAS:528:DC%2BC2cXhtVCjsr%2FF249643952014EnST...48.8538Z BruDSarrAPhilippotLRelative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environmentsAppl. Environ. Microbiol.200773597159741:CAS:528:DC%2BD2sXhtV2gtLnF176303062074903 HuangTAmmonia-oxidation as an engine to generate nitrous oxide in an intensively managed calcareous fluvo-aquic soilSci. Rep201443950244922013912618 GriffithsRIWhiteleyASO’DonnellAGBaileyMJRapid Method for Coextraction of DNA and RNA from Natural Environments for Analysis of Ribosomal DNA- and rRNA-Based Microbial Community CompositionAppl. Environ. Microbiol.200066548854911:CAS:528:DC%2BD3MXjsVygsLw%3D1109793492488 JuXTReducing environmental risk by improving N management in intensive Chinese agricultural systemsPro. Natl. Acad. of Sci. USA2009106304130461:CAS:528:DC%2BD1MXivFyqtbY%3D2009PNAS..106.3041J NadkarniMAMartinFEJacquesNAHunterNDetermination of bacterial load by real-time PCR using a broad-range (universal) probe and primers setMicrobiol. Soc20021482572661:CAS:528:DC%2BD38XhvVemtrw%3D TiedjeJMSexstoneAJParkinTBRevsbechNPSheltonDRAnaerobic processes in soilPlant Soil1984761972121:CAS:528:DyaL2cXhvFSksLk%3D Drawing Down N2O to Protect Climate and the Ozone Layer. A UNEP (United Nations Environment Programme) Synthesis Report. Nairobi, Kenya (2013). WallensteinMDMyroldDDFirestoneMVoytekMEnvironmental controls on denitrifying communities and denitrification rates: Insights from molecular methodsEcol. Appl.2006162143215217205893 InselsbacherEShort-term competition between crop plants and soil microbes for inorganic N fertilizerSoil Biol. Biochem.2010423603721:CAS:528:DC%2BD1MXhsFyrsr%2FO GaoBThe impact of alternative cropping systems on global warming potential, grain yield and groundwater useAgric. Ecosyst. Environ20152034654 RotthauweJHWitzelKPLiesackWThe ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populationsAppl. Environ. Microbiol.199763470447121:CAS:528:DyaK2sXnvV2rtr0%3D9406389168793 CuiFYanGZhouZZhengXDengJAnnual emissions of nitrous oxide and nitric oxide from a wheat–maize cropping system on a silt loam calcareous soil in the North China PlainSoil Biol. Biochem20124810191:CAS:528:DC%2BC38XjsFKkt7Y%3D HallinSLindgrenPEPCR detection of genes encoding nitrite reductase in denitrifying bacteriaAppl. Environ. Microbiol.199965165216571:CAS:528:DyaK1MXitlartLc%3D1010326391233 BaoQLJuXTGaoBQuZChristiePLuYHResponse of nitrous oxide and corresponding bacteria to managements in an agricultural soilSoil Sci. Soc. Am. J2012761301411:CAS:528:DC%2BC38XnvFKkuw%3D%3D2012SSASJ..76..130B BaggsEMSoil microbial sources of nitrous oxide: recent advances in knowledge, emerging challenges and future directionCurr. Opin. Environ. Sustain20113321327 BremnerSourcesof nitrous oxide in soilsNutr. Cycl. Agroecosys1997497161:CAS:528:DyaK2sXmslCqs7Y%3D NDRC. The People’s Republic of China National Greenhouse Gas Inventory. China Environmental Science Press, Beijing (2014). HuangTGaoBChristiePJuXNet global warming potential and greenhouse gas intensity in a double-cropping cereal rotation as affected by nitrogen and straw managementBiogeosciences201310789779112013BGeo...10.7897H TejadaMHernandezMTGarciaCSoil restoration using composted plant residues: Effects on soil propertiesSoil Till. Res.2009102109117 GeYZhangJBZhangLMYangMHeJZLong-term fertilization regimes affect bacterial community structure and diversity of an agricultural soil in Northern ChinaJ. Soils Sediments2008843501:CAS:528:DC%2BD1cXjtFKrtbY%3D ProsserJINicolGWArchaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiationTrends Microbiol.2012205235311:CAS:528:DC%2BC38XhtlamurnJ22959489 GaoBJuXTZhangQChristiePZhangFSNew estimates of direct N2O emissions from Chinese croplands from 1980 to 2007 using localized emission factorsBiogeosciences20118301130241:CAS:528:DC%2BC38XisFSnu7s%3D2011BGeo....8.3011G JiaZConradRBacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soilEnviron. Microbiol200911165816711:CAS:528:DC%2BD1MXptlyhurs%3D19236445 GaoBNitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: a two-year field studySci. total Environ.20144721121241:CAS:528:DC%2BC2cXht1Khtrs%3D242911362014ScTEn.472..112G MaLShanJYanXYNitrite behavior accounts for the nitrous oxide peaks following fertilization in a fluvo-aquic soilBiol. Fertil. Soils2015515635721:CAS:528:DC%2BC2MXks1ags7o%3D DingWXCaiYCaiZCYagiKZhengXHNitrous oxide emissions from an intensively cultivated maize-wheat rotation soil in the North China PlainSci. Total Environ.20073735015111:CAS:528:DC%2BD2sXhtlams7c%3D172294552007ScTEn.373..501D HøjbergOBinneruoSJSørensenJPotential rates of ammonium oxidation, nitrite oxidation, nitrate reduction and denitrification in the young barley rhizophereSoil Biol. Biochem.1996284754 HuXKGreenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimesEnviron. Pollut.20131761982071:CAS:528:DC%2BC3sXktFWiu7c%3D23434574 MaharjanBVentereaRTNitrite intensity explains N management effects on N2O emissions in maizeSoil Biol. Biochem.2013662292381:CAS:528:DC%2BC3sXhsVahsbvO QiuSImproved Nitrogen Management for an Intensive Winter Wheat/Summer Maize Double-cropping SystemSoil Sci. Soc. Am. J2012762862971:CAS:528:DC%2BC38XnvFKqtw%3D%3D2012SSASJ..76..286Q RavishankaraARDanielJSPortmannRWNitrous Oxide (N2O): The dominant ozone-depleting substance emitted in the 21st centuryScience20093261231251:CAS:528:DC%2BD1MXhtF2hs7jF197134912009Sci...326..123R JuXChristiePCalculation of theoretical nitrogen rate for simple nitrogen recommendations in intensive cropping systems: A case study on the North China PlainField Crops Res2011124450458 IPCC. N2O emissions from managed soils and CO2 emissions from lime and urea application. In IPCC guidelines for national greenhouse gas invertories 4 (eds Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. ) 11.1–11.54. Hayama, Japan: IGES (2006). VentereaRTChallenges and opportunities for mitigating nitrous oxide emissions from fertilized cropping systemsFront. Ecol. Environ.201210562570 Butterbach-BahlKBaggsEMDannenmannMKieseRZechmeister-BoltensternSNitrous oxide emissions from soils: how well do we understand the processes and their controls?Philos. Trans. R. Soc. London, Ser. B20133689197 ZhuXBurgerMDoaneTAHorwathWRAmmonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availabilityPro. Natl. Acad. of Sci. USA2013110632863331:CAS:528:DC%2BC3sXnvVOltbk%3D2013PNAS..110.6328Z AiCDifferent roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia oxidizers in a calcareous fluvo-aquic soilSoil Biol. Biochem.20135730421:CAS:528:DC%2BC3sXitVGntLg%3D HenrySQuantification of denitrifying bacteria in soils by nirK gene targeted real-time PCRJ. Microbiol. Methods2004593273351:CAS:528:DC%2BD2cXos1ehsrk%3D15488276 KandelerEDeiglmayrKTscherkoDBruDPhilippotLAbundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier forelandAppl. Environ. Microbiol.200672595759621:CAS:528:DC%2BD28XpvVKjsbg%3D169572161563666 JägerNStangeCFLudwigBFlessaHEmission rates of N2O and CO2 from soils with different organic matter content from three long-term fertilization experiments - a laboratory studyBiol. Fertil. Soils201147483494 WrageNVelthofGLvan BeusichemMLOenemaORole of nitrifier denitrification in the production of nitrous oxideSoil Biol. Biochem.200133172317321:CAS:528:DC%2BD3MXotFOlurg%3D ClarkIMBuchkinaNJhurreeaDGouldingKWHirschPRImpacts of nitrogen application rates on the activity and diversity of denitrifying bacteria in the Broadbalk Wheat ExperimentPhilos. Trans. R. Soc. London, Ser. B2012367123512441:CAS:528:DC%2BC38XmvVems7Y%3D224511093306624 HartmannTEYueSCSchulzRChenXPZhangFSMüllerTNitrogen dynamics, apparent mineralization and balance AR Ravishankara (BFsrep43283_CR2) 2009; 326 G Braker (BFsrep43283_CR30) 2011; 75 B Gao (BFsrep43283_CR20) 2014; 472 XK Hu (BFsrep43283_CR22) 2013; 176 H Chu (BFsrep43283_CR31) 2007; 73 S Henry (BFsrep43283_CR59) 2004; 59 RT Venterea (BFsrep43283_CR36) 2000; 29 F Cui (BFsrep43283_CR27) 2012; 48 RT Venterea (BFsrep43283_CR14) 2012; 10 Z Jia (BFsrep43283_CR43) 2009; 11 K Butterbach-Bahl (BFsrep43283_CR13) 2011; 3 JH Rotthauwe (BFsrep43283_CR56) 1997; 63 E Kandeler (BFsrep43283_CR58) 2006; 72 T Huang (BFsrep43283_CR24) 2014; 4 BFsrep43283_CR4 DM Kool (BFsrep43283_CR10) 2010; 61 BFsrep43283_CR3 XT Ju (BFsrep43283_CR16) 2009; 106 BFsrep43283_CR28 BFsrep43283_CR1 W Xia (BFsrep43283_CR42) 2011; 5 M Tejada (BFsrep43283_CR37) 2009; 102 EM Baggs (BFsrep43283_CR11) 2011; 3 C Ai (BFsrep43283_CR34) 2013; 57 MA Nadkarni (BFsrep43283_CR55) 2002; 148 F Zhou (BFsrep43283_CR17) 2014; 48 N Jäger (BFsrep43283_CR39) 2011; 47 S Qiu (BFsrep43283_CR50) 2012; 76 D Bru (BFsrep43283_CR57) 2007; 73 B Gao (BFsrep43283_CR21) 2015; 203 E Inselsbacher (BFsrep43283_CR49) 2010; 42 HJ Di (BFsrep43283_CR32) 2009; 2 B Maharjan (BFsrep43283_CR48) 2013; 66 RJ Stevens (BFsrep43283_CR51) 1995; 59 WX Ding (BFsrep43283_CR40) 2007; 373 IM Clark (BFsrep43283_CR45) 2012; 367 H Tian (BFsrep43283_CR5) 2016; 531 BFsrep43283_CR52 Y Ge (BFsrep43283_CR41) 2008; 8 N Wrage (BFsrep43283_CR8) 2001; 33 CS Snyder (BFsrep43283_CR15) 2009; 133 TE Hartmann (BFsrep43283_CR38) 2014; 160 RI Griffiths (BFsrep43283_CR54) 2000; 66 X Ju (BFsrep43283_CR18) 2011; 124 JP Shen (BFsrep43283_CR33) 2008; 10 T Huang (BFsrep43283_CR23) 2013; 10 MD Wallenstein (BFsrep43283_CR35) 2006; 16 N Wrage (BFsrep43283_CR9) 2005; 19 S Hallin (BFsrep43283_CR60) 1999; 65 EM Baggs (BFsrep43283_CR46) 2003; 9 B Gao (BFsrep43283_CR19) 2011; 8 GX Yan (BFsrep43283_CR26) 2013; 178 L Ma (BFsrep43283_CR29) 2015; 51 O Højberg (BFsrep43283_CR47) 1996; 28 Sources Bremner (BFsrep43283_CR7) 1997; 49 K Butterbach-Bahl (BFsrep43283_CR6) 2013; 368 X Zhu (BFsrep43283_CR12) 2013; 110 QL Bao (BFsrep43283_CR25) 2012; 76 JI Prosser (BFsrep43283_CR44) 2012; 20 JM Tiedje (BFsrep43283_CR53) 1984; 76 S Henry (BFsrep43283_CR61) 2006; 72 |
References_xml | – reference: JuXTReducing environmental risk by improving N management in intensive Chinese agricultural systemsPro. Natl. Acad. of Sci. USA2009106304130461:CAS:528:DC%2BD1MXivFyqtbY%3D2009PNAS..106.3041J – reference: DiHJNitrification driven by bacteria and not archaea in nitrogen-rich grassland soilsNat. Geosci.200926216241:CAS:528:DC%2BD1MXhtVKktLbE2009NatGe...2..621D – reference: StevensRJLaughlinRJNitrite transformation during soil extraction with potassium chlorideSoil Sci. Soc. Am. J1995599339381:CAS:528:DyaK2MXlvFyqtrk%3D1995SSASJ..59..933S – reference: NDRC. The People’s Republic of China National Greenhouse Gas Inventory. China Environmental Science Press, Beijing (2014). – reference: TiedjeJMSexstoneAJParkinTBRevsbechNPSheltonDRAnaerobic processes in soilPlant Soil1984761972121:CAS:528:DyaL2cXhvFSksLk%3D – reference: GaoBThe impact of alternative cropping systems on global warming potential, grain yield and groundwater useAgric. Ecosyst. Environ20152034654 – reference: ShenJPZhangLMZhuYGZhangJBHeJZAbundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loamEnviron. Microbiol200810160116111:CAS:528:DC%2BD1cXnvVWkurk%3D18336563 – reference: QiuSImproved Nitrogen Management for an Intensive Winter Wheat/Summer Maize Double-cropping SystemSoil Sci. Soc. Am. J2012762862971:CAS:528:DC%2BC38XnvFKqtw%3D%3D2012SSASJ..76..286Q – reference: MaLShanJYanXYNitrite behavior accounts for the nitrous oxide peaks following fertilization in a fluvo-aquic soilBiol. Fertil. Soils2015515635721:CAS:528:DC%2BC2MXks1ags7o%3D – reference: WallensteinMDMyroldDDFirestoneMVoytekMEnvironmental controls on denitrifying communities and denitrification rates: Insights from molecular methodsEcol. Appl.2006162143215217205893 – reference: IPCC. N2O emissions from managed soils and CO2 emissions from lime and urea application. In IPCC guidelines for national greenhouse gas invertories 4 (eds Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. ) 11.1–11.54. Hayama, Japan: IGES (2006). – reference: GaoBJuXTZhangQChristiePZhangFSNew estimates of direct N2O emissions from Chinese croplands from 1980 to 2007 using localized emission factorsBiogeosciences20118301130241:CAS:528:DC%2BC38XisFSnu7s%3D2011BGeo....8.3011G – reference: JiaZConradRBacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soilEnviron. Microbiol200911165816711:CAS:528:DC%2BD1MXptlyhurs%3D19236445 – reference: BremnerSourcesof nitrous oxide in soilsNutr. Cycl. Agroecosys1997497161:CAS:528:DyaK2sXmslCqs7Y%3D – reference: GaoBNitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: a two-year field studySci. total Environ.20144721121241:CAS:528:DC%2BC2cXht1Khtrs%3D242911362014ScTEn.472..112G – reference: BaggsEMSoil microbial sources of nitrous oxide: recent advances in knowledge, emerging challenges and future directionCurr. Opin. Environ. Sustain20113321327 – reference: ClarkIMBuchkinaNJhurreeaDGouldingKWHirschPRImpacts of nitrogen application rates on the activity and diversity of denitrifying bacteria in the Broadbalk Wheat ExperimentPhilos. Trans. R. Soc. London, Ser. B2012367123512441:CAS:528:DC%2BC38XmvVems7Y%3D224511093306624 – reference: ProsserJINicolGWArchaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiationTrends Microbiol.2012205235311:CAS:528:DC%2BC38XhtlamurnJ22959489 – reference: Hart, S. C., Stark, J. M., Davidson, E. A. & Firestone, M. K.. In Microbiological and Biochemical properties: Nitrogen mineralization, immobilization, and nitrification. Methods of Soil Analysis: Part 2 (eds Bigham, J. M. ) 985–1018 (Madison, 1994). – reference: KoolDMNitrifier denitrification can be a source of N2O from soil: a revised approach to the dual-isotope labelling methodEur. J. Soil Sci2010617597721:CAS:528:DC%2BC3cXhtlCrur3O – reference: ChuHCommunity structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soilAppl. Environ. Microbiol.2007734854911:CAS:528:DC%2BD2sXhtFCqsro%3D17098920 – reference: XiaWAutotrophic growth of nitrifying community in an agricultural soilISME J.20115122612361:CAS:528:DC%2BC3MXnvVaqsLs%3D213263373146291 – reference: JuXChristiePCalculation of theoretical nitrogen rate for simple nitrogen recommendations in intensive cropping systems: A case study on the North China PlainField Crops Res2011124450458 – reference: NadkarniMAMartinFEJacquesNAHunterNDetermination of bacterial load by real-time PCR using a broad-range (universal) probe and primers setMicrobiol. Soc20021482572661:CAS:528:DC%2BD38XhvVemtrw%3D – reference: ZhuXBurgerMDoaneTAHorwathWRAmmonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availabilityPro. Natl. Acad. of Sci. USA2013110632863331:CAS:528:DC%2BC3sXnvVOltbk%3D2013PNAS..110.6328Z – reference: GriffithsRIWhiteleyASO’DonnellAGBaileyMJRapid Method for Coextraction of DNA and RNA from Natural Environments for Analysis of Ribosomal DNA- and rRNA-Based Microbial Community CompositionAppl. Environ. Microbiol.200066548854911:CAS:528:DC%2BD3MXjsVygsLw%3D1109793492488 – reference: VentereaRTRolstonDEMechanistic modeling of nitrite accumulation and nitrogen oxide gas emissions during nitrificationJ. Environ. Qual200029174117511:CAS:528:DC%2BD3cXosVGktrk%3D – reference: TianHThe terrestrial biosphere as a net source of greenhouse gases to the atmosphereNature20165312252281:CAS:528:DC%2BC28XktVChurg%3D269616562016Natur.531..225T – reference: RavishankaraARDanielJSPortmannRWNitrous Oxide (N2O): The dominant ozone-depleting substance emitted in the 21st centuryScience20093261231251:CAS:528:DC%2BD1MXhtF2hs7jF197134912009Sci...326..123R – reference: SnyderCSBruulsemaTWJensenTLFixenPEReview of greenhouse gas emissions from crop production systems and fertilizer management effectsAgric. Ecosyst. Environ20091332472661:CAS:528:DC%2BD1MXptl2ht7w%3D – reference: HuXKGreenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimesEnviron. Pollut.20131761982071:CAS:528:DC%2BC3sXktFWiu7c%3D23434574 – reference: WrageNVelthofGLvan BeusichemMLOenemaORole of nitrifier denitrification in the production of nitrous oxideSoil Biol. Biochem.200133172317321:CAS:528:DC%2BD3MXotFOlurg%3D – reference: InselsbacherEShort-term competition between crop plants and soil microbes for inorganic N fertilizerSoil Biol. Biochem.2010423603721:CAS:528:DC%2BD1MXhsFyrsr%2FO – reference: AiCDifferent roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia oxidizers in a calcareous fluvo-aquic soilSoil Biol. Biochem.20135730421:CAS:528:DC%2BC3sXitVGntLg%3D – reference: HallinSLindgrenPEPCR detection of genes encoding nitrite reductase in denitrifying bacteriaAppl. Environ. Microbiol.199965165216571:CAS:528:DyaK1MXitlartLc%3D1010326391233 – reference: Drawing Down N2O to Protect Climate and the Ozone Layer. A UNEP (United Nations Environment Programme) Synthesis Report. Nairobi, Kenya (2013). – reference: WrageNvan GroenigenJWOenemaOBaggsEMA novel dual-isotope labelling method for distinguishing between soil sources of N2ORapid Commun. Mass. Spectrom.200519329833061:CAS:528:DC%2BD2MXht1OgtbzE162205272005RCMS...19.3298W – reference: BaoQLJuXTGaoBQuZChristiePLuYHResponse of nitrous oxide and corresponding bacteria to managements in an agricultural soilSoil Sci. Soc. Am. J2012761301411:CAS:528:DC%2BC38XnvFKkuw%3D%3D2012SSASJ..76..130B – reference: DingWXCaiYCaiZCYagiKZhengXHNitrous oxide emissions from an intensively cultivated maize-wheat rotation soil in the North China PlainSci. Total Environ.20073735015111:CAS:528:DC%2BD2sXhtlams7c%3D172294552007ScTEn.373..501D – reference: ZhouFA new high-resolution N2O emission inventory for China in 2008Environ. Sci. Technol201448853885471:CAS:528:DC%2BC2cXhtVCjsr%2FF249643952014EnST...48.8538Z – reference: HenrySBruDStresBHalletSPhilippotLQuantitative Detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soilsAppl. Environ. Microbiol.200672518151891:CAS:528:DC%2BD28XosVKmu7g%3D168852631538733 – reference: Butterbach-BahlKBaggsEMDannenmannMKieseRZechmeister-BoltensternSNitrous oxide emissions from soils: how well do we understand the processes and their controls?Philos. Trans. R. Soc. London, Ser. B20133689197 – reference: HuangTGaoBChristiePJuXNet global warming potential and greenhouse gas intensity in a double-cropping cereal rotation as affected by nitrogen and straw managementBiogeosciences201310789779112013BGeo...10.7897H – reference: HuangTAmmonia-oxidation as an engine to generate nitrous oxide in an intensively managed calcareous fluvo-aquic soilSci. Rep201443950244922013912618 – reference: Butterbach-BahlKDannenmannMDenitrification and associated soil N2O emissions due to agricultural activities in a changing climateCurr. Opin. Environ. Sustain20113389395 – reference: RotthauweJHWitzelKPLiesackWThe ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populationsAppl. Environ. Microbiol.199763470447121:CAS:528:DyaK2sXnvV2rtr0%3D9406389168793 – reference: VentereaRTChallenges and opportunities for mitigating nitrous oxide emissions from fertilized cropping systemsFront. Ecol. Environ.201210562570 – reference: CuiFYanGZhouZZhengXDengJAnnual emissions of nitrous oxide and nitric oxide from a wheat–maize cropping system on a silt loam calcareous soil in the North China PlainSoil Biol. Biochem20124810191:CAS:528:DC%2BC38XjsFKkt7Y%3D – reference: HartmannTEYueSCSchulzRChenXPZhangFSMüllerTNitrogen dynamics, apparent mineralization and balance calculations in a maize-wheat double cropping system of the North China PlainField Crop Res20141602230 – reference: HenrySQuantification of denitrifying bacteria in soils by nirK gene targeted real-time PCRJ. Microbiol. Methods2004593273351:CAS:528:DC%2BD2cXos1ehsrk%3D15488276 – reference: HøjbergOBinneruoSJSørensenJPotential rates of ammonium oxidation, nitrite oxidation, nitrate reduction and denitrification in the young barley rhizophereSoil Biol. Biochem.1996284754 – reference: BruDSarrAPhilippotLRelative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environmentsAppl. Environ. Microbiol.200773597159741:CAS:528:DC%2BD2sXhtV2gtLnF176303062074903 – reference: BaggsEMRichterMHartwigUACadishGNitrous oxide emissions from grass swards during the eighth year of elevated atmospheric pCO2 (Swiss FACE)Global Change Bilo20039121412222003GCBio...9.1214B – reference: BrakerGConradRDiversity, structure, and size of N2O-producing microbial communities in soils--what matters for their functioning?Adv. Appl. Microbiol20117533701:CAS:528:DC%2BC3MXht12isb%2FM21807245 – reference: Solomon, S. et al. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) 33–34 (Cambridge University Press, Cambridge, 2007). – reference: KandelerEDeiglmayrKTscherkoDBruDPhilippotLAbundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier forelandAppl. Environ. Microbiol.200672595759621:CAS:528:DC%2BD28XpvVKjsbg%3D169572161563666 – reference: JägerNStangeCFLudwigBFlessaHEmission rates of N2O and CO2 from soils with different organic matter content from three long-term fertilization experiments - a laboratory studyBiol. Fertil. Soils201147483494 – reference: MaharjanBVentereaRTNitrite intensity explains N management effects on N2O emissions in maizeSoil Biol. Biochem.2013662292381:CAS:528:DC%2BC3sXhsVahsbvO – reference: TejadaMHernandezMTGarciaCSoil restoration using composted plant residues: Effects on soil propertiesSoil Till. Res.2009102109117 – reference: GeYZhangJBZhangLMYangMHeJZLong-term fertilization regimes affect bacterial community structure and diversity of an agricultural soil in Northern ChinaJ. Soils Sediments2008843501:CAS:528:DC%2BD1cXjtFKrtbY%3D – reference: YanGXTwo-year simultaneous records of N2O and NO fluxes from a farmed cropland in the northern China plain with a reduced nitrogen addition rate by one-thirdAgric. Ecosyst. Environ201317839501:CAS:528:DC%2BC3sXhsVKkt77I – volume: 65 start-page: 1652 year: 1999 ident: BFsrep43283_CR60 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.65.4.1652-1657.1999 – volume: 20 start-page: 523 year: 2012 ident: BFsrep43283_CR44 publication-title: Trends Microbiol. doi: 10.1016/j.tim.2012.08.001 – volume: 8 start-page: 3011 year: 2011 ident: BFsrep43283_CR19 publication-title: Biogeosciences doi: 10.5194/bg-8-3011-2011 – volume: 66 start-page: 5488 year: 2000 ident: BFsrep43283_CR54 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.66.12.5488-5491.2000 – ident: BFsrep43283_CR1 – volume: 59 start-page: 327 year: 2004 ident: BFsrep43283_CR59 publication-title: J. Microbiol. Methods doi: 10.1016/j.mimet.2004.07.002 – volume: 48 start-page: 10 year: 2012 ident: BFsrep43283_CR27 publication-title: Soil Biol. Biochem doi: 10.1016/j.soilbio.2012.01.007 – volume: 5 start-page: 1226 year: 2011 ident: BFsrep43283_CR42 publication-title: ISME J. doi: 10.1038/ismej.2011.5 – volume: 11 start-page: 1658 year: 2009 ident: BFsrep43283_CR43 publication-title: Environ. Microbiol doi: 10.1111/j.1462-2920.2009.01891.x – volume: 49 start-page: 7 year: 1997 ident: BFsrep43283_CR7 publication-title: Nutr. Cycl. Agroecosys doi: 10.1023/A:1009798022569 – volume: 63 start-page: 4704 year: 1997 ident: BFsrep43283_CR56 publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.63.12.4704-4712.1997 – volume: 176 start-page: 198 year: 2013 ident: BFsrep43283_CR22 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2013.01.040 – volume: 16 start-page: 2143 year: 2006 ident: BFsrep43283_CR35 publication-title: Ecol. Appl. doi: 10.1890/1051-0761(2006)016[2143:ECODCA]2.0.CO;2 – volume: 29 start-page: 1741 year: 2000 ident: BFsrep43283_CR36 publication-title: J. Environ. Qual doi: 10.2134/jeq2000.00472425002900060003x – volume: 10 start-page: 7897 year: 2013 ident: BFsrep43283_CR23 publication-title: Biogeosciences doi: 10.5194/bg-10-7897-2013 – volume: 368 start-page: 91 year: 2013 ident: BFsrep43283_CR6 publication-title: Philos. Trans. R. Soc. London, Ser. B doi: 10.1098/rstb.2013.0122 – volume: 3 start-page: 321 year: 2011 ident: BFsrep43283_CR11 publication-title: Curr. Opin. Environ. Sustain doi: 10.1016/j.cosust.2011.08.011 – volume: 72 start-page: 5957 year: 2006 ident: BFsrep43283_CR58 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00439-06 – volume: 76 start-page: 130 year: 2012 ident: BFsrep43283_CR25 publication-title: Soil Sci. Soc. Am. J doi: 10.2136/sssaj2011.0152 – volume: 124 start-page: 450 year: 2011 ident: BFsrep43283_CR18 publication-title: Field Crops Res doi: 10.1016/j.fcr.2011.08.002 – volume: 66 start-page: 229 year: 2013 ident: BFsrep43283_CR48 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.07.015 – ident: BFsrep43283_CR28 – volume: 2 start-page: 621 year: 2009 ident: BFsrep43283_CR32 publication-title: Nat. Geosci. doi: 10.1038/ngeo613 – volume: 28 start-page: 47 year: 1996 ident: BFsrep43283_CR47 publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(95)00119-0 – volume: 76 start-page: 286 year: 2012 ident: BFsrep43283_CR50 publication-title: Soil Sci. Soc. Am. J doi: 10.2136/sssaj2011.0156 – volume: 76 start-page: 197 year: 1984 ident: BFsrep43283_CR53 publication-title: Plant Soil doi: 10.1007/BF02205580 – volume: 531 start-page: 225 year: 2016 ident: BFsrep43283_CR5 publication-title: Nature doi: 10.1038/nature16946 – volume: 72 start-page: 5181 year: 2006 ident: BFsrep43283_CR61 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00231-06 – volume: 326 start-page: 123 year: 2009 ident: BFsrep43283_CR2 publication-title: Science doi: 10.1126/science.1176985 – volume: 10 start-page: 1601 year: 2008 ident: BFsrep43283_CR33 publication-title: Environ. Microbiol doi: 10.1111/j.1462-2920.2008.01578.x – volume: 75 start-page: 33 year: 2011 ident: BFsrep43283_CR30 publication-title: Adv. Appl. Microbiol doi: 10.1016/B978-0-12-387046-9.00002-5 – volume: 160 start-page: 22 year: 2014 ident: BFsrep43283_CR38 publication-title: Field Crop Res doi: 10.1016/j.fcr.2014.02.014 – volume: 472 start-page: 112 year: 2014 ident: BFsrep43283_CR20 publication-title: Sci. total Environ. doi: 10.1016/j.scitotenv.2013.11.003 – ident: BFsrep43283_CR3 – volume: 33 start-page: 1723 year: 2001 ident: BFsrep43283_CR8 publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(01)00096-7 – volume: 133 start-page: 247 year: 2009 ident: BFsrep43283_CR15 publication-title: Agric. Ecosyst. Environ doi: 10.1016/j.agee.2009.04.021 – volume: 19 start-page: 3298 year: 2005 ident: BFsrep43283_CR9 publication-title: Rapid Commun. Mass. Spectrom. doi: 10.1002/rcm.2191 – volume: 73 start-page: 485 year: 2007 ident: BFsrep43283_CR31 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01536-06 – volume: 8 start-page: 43 year: 2008 ident: BFsrep43283_CR41 publication-title: J. Soils Sediments doi: 10.1065/jss2008.01.270 – volume: 106 start-page: 3041 year: 2009 ident: BFsrep43283_CR16 publication-title: Pro. Natl. Acad. of Sci. USA doi: 10.1073/pnas.0813417106 – volume: 47 start-page: 483 year: 2011 ident: BFsrep43283_CR39 publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-011-0553-5 – volume: 48 start-page: 8538 year: 2014 ident: BFsrep43283_CR17 publication-title: Environ. Sci. Technol doi: 10.1021/es5018027 – volume: 203 start-page: 46 year: 2015 ident: BFsrep43283_CR21 publication-title: Agric. Ecosyst. Environ doi: 10.1016/j.agee.2015.01.020 – volume: 373 start-page: 501 year: 2007 ident: BFsrep43283_CR40 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2006.12.026 – volume: 9 start-page: 1214 year: 2003 ident: BFsrep43283_CR46 publication-title: Global Change Bilo doi: 10.1046/j.1365-2486.2003.00654.x – volume: 148 start-page: 257 year: 2002 ident: BFsrep43283_CR55 publication-title: Microbiol. Soc doi: 10.1099/00221287-148-1-257 – volume: 367 start-page: 1235 year: 2012 ident: BFsrep43283_CR45 publication-title: Philos. Trans. R. Soc. London, Ser. B doi: 10.1098/rstb.2011.0314 – ident: BFsrep43283_CR52 doi: 10.2136/sssabookser5.2.c42 – volume: 102 start-page: 109 year: 2009 ident: BFsrep43283_CR37 publication-title: Soil Till. Res. doi: 10.1016/j.still.2008.08.004 – volume: 4 start-page: 3950 year: 2014 ident: BFsrep43283_CR24 publication-title: Sci. Rep doi: 10.1038/srep03950 – volume: 61 start-page: 759 year: 2010 ident: BFsrep43283_CR10 publication-title: Eur. J. Soil Sci doi: 10.1111/j.1365-2389.2010.01270.x – volume: 57 start-page: 30 year: 2013 ident: BFsrep43283_CR34 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.08.003 – volume: 10 start-page: 562 year: 2012 ident: BFsrep43283_CR14 publication-title: Front. Ecol. Environ. doi: 10.1890/120062 – volume: 73 start-page: 5971 year: 2007 ident: BFsrep43283_CR57 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00643-07 – volume: 59 start-page: 933 year: 1995 ident: BFsrep43283_CR51 publication-title: Soil Sci. Soc. Am. J doi: 10.2136/sssaj1995.03615995005900030044x – volume: 178 start-page: 39 year: 2013 ident: BFsrep43283_CR26 publication-title: Agric. Ecosyst. Environ doi: 10.1016/j.agee.2013.06.016 – ident: BFsrep43283_CR4 – volume: 51 start-page: 563 year: 2015 ident: BFsrep43283_CR29 publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-015-1001-8 – volume: 42 start-page: 360 year: 2010 ident: BFsrep43283_CR49 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.11.019 – volume: 110 start-page: 6328 year: 2013 ident: BFsrep43283_CR12 publication-title: Pro. Natl. Acad. of Sci. USA doi: 10.1073/pnas.1219993110 – volume: 3 start-page: 389 year: 2011 ident: BFsrep43283_CR13 publication-title: Curr. Opin. Environ. Sustain doi: 10.1016/j.cosust.2011.08.004 |
SSID | ssj0000529419 |
Score | 2.4827733 |
Snippet | The linkage between N
2
O emissions and the abundance of nitrifier and denitrifier genes is unclear in the intensively managed calcareous fluvo-aquic soils of... The linkage between N2 O emissions and the abundance of nitrifier and denitrifier genes is unclear in the intensively managed calcareous fluvo-aquic soils of... The linkage between N2O emissions and the abundance of nitrifier and denitrifier genes is unclear in the intensively managed calcareous fluvo-aquic soils of... |
SourceID | pubmedcentral proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 43283 |
SubjectTerms | 704/106/694 704/47/4112 Abundance Agricultural practices AmoA gene Calcareous soils Crop rotation Denitrification Emission measurements Emissions Fertilization Fertilizer application Genes Humanities and Social Sciences Manures multidisciplinary NirK protein Nitrification Nitrous oxide Science Straw Urea |
SummonAdditionalLinks | – databaseName: Proquest Health and Medical Complete dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA4-ELyIT1xdJT4OXoJtkjbpSURcRFAvLuytNGmChaXturuC_95MX-su4jlDk85MZ6Yzk28QuqapJ5QMQiK0lxCuLCWKBZowZgHdTPkihAvOL6_h05A_j4JRk3CbNm2VrU2sDHVaaMiR34LjEtQ5d3FXTghMjYLqajNCYx1tAnQZaLUYiS7HAlUs7kctoBCTt87tlJxRyZbd0CK2XO2MXCmPVl5nsIt2mnAR39fy3UNrJt9HW_UAye8DVMKvpLMIuGm3wq_0DcMEN8iB4SRPMfitOt2HnaoYnCi4-uEkjTMgwFnbwj7-xnUna4qd2KAhrJhPsR3PvwqSTOaZxtMiGx-i4eDx_eGJNDMUiObSnxEhPaqMkimXqdTW58KFTAnVoRcJG4URTST1VWICzX0tlbWSKWqcjxc0NJEzh0doIy9yc4wwC4xMLeORckFLpJhyJJQrxlNKjfVoD920LI11AzAOcy7GcVXoZjLuuN9Dlx1pWaNq_EXUb-USNx_WNF6oQQ9ddMuOr1DnSHJgTexLAYYo8N0jxJI8u80AVHt5Jc8-KnDtgEGl0b3MVSv5X5uvHvHk_yOeom0KUQDcgOd9tDH7nJszF8PM1HmlqD9zPvVg priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gExIXxFOMl8LjwKWiTdImPU6IaZoEHABpt6pJE1Fp6gbbkPbvsdcHbOLAOW6T2kk-N3Y-E3LDMl9qFUaeNH7qCe2Yp3loPM4dspvpQEZ4wfnxKeq_icEwHFZk0dMqrbKktFxu03V22B3gxURwwMJN0kaGdpjS7W538DJoDlQwZCWCuGYP4urnmVXM-XEk19Mg12KhS4jp7ZKdyjek3XI0e2TDFvtkq6wWuTggE_xvhOVPq9wq-sSeKZZrwwMvmhYZRZAqz_YozAtLU433PMCsNEcBmtf56qMFLdNWMwo2wuyv8XxK3Wj-NfbSj3lu6HScjw7JW-_h9b7vVQUTPCNUMPOk8pm2WmVCZcq4QEjwj1JmIj-WLo5ilioW6NSGRgRGaecU18wCoEsW2Rj2viPSKsaFPSaUh1ZljotYg4cSa65BhAnNRcaYdT7rkNtapYmp2MSxqMUoWUa1uUoa7XfIVSM6KSk0_hI6q-2SVKtomqCzIhk4dLJDLptm0CsGNdICVZMESuKuEwbwCrliz6YzZNBebSny9yWTdsgxrAgfc11b_lfn60M8-ZfUKdlmiPx4612ckdbsc27PwW-Z6Ytqxn4DM3fxwQ priority: 102 providerName: Springer Nature |
Title | Linkage between N2O emission and functional gene abundance in an intensively managed calcareous fluvo-aquic soil |
URI | https://link.springer.com/article/10.1038/srep43283 https://www.proquest.com/docview/1901724357 https://www.proquest.com/docview/1872578513 https://pubmed.ncbi.nlm.nih.gov/PMC5324132 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEB72QaGX0idNuw3q49CLW1uSLflQShp2WQKblraB3IwlS9RgnOwmKc2_74wf6SbsqSeDNZbsGVnzSfMCeMeLUBkdJ4GyYR5I43lgRGwDITxlNzORSijA-WqaXM7kZB7Pj6CvsdkxcHXn1o7qSc1uqg9_rref8Yf_1IaM64-oS5ZSoJ48hlNUSIoKGVx1KL9N8c1TGaV9XqHbT1AuYM0FGcP2FdM_tHnoK3lgMG300MVDeNABSDZqJf4Ijlz9GO61JSW3T2BJm0tcI1jngMWm_Cujmm50KsbyumCkydoDQIaTx7HcUDAIyp6VRMDK3qm92rLWt7VgKEhyEVtsVsxXm9-LIL_elJatFmX1FGYX5z_Hl0FXVSGwUkfrQOmQG2d0IXWhrY-kQhCVc5uEqfJpkvJc88jkLrYystp4r4XhDrW-4olLcYF8Bif1onbPgYnY6cILmRqEMakRBkm4NEIWnDsf8gG871ma2S7lOFW-qLLG9C10thPEAN7sSJdtno27iM56uWT9TMkI0SiOqE8N4PWuGflKlo-8JtZkkVa0NMURdqH25LkbjNJs77fU5a8m3XYsyPaIH_O2l_ytwQ9f8cV_9_8S7nOCDBQuL8_gZH2zca8Q8KzNEI7VXA3hdDSa_Jjg9cv59Nt3vDtOxsPmEGHYTPi_pOoKqg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0KqKEFxQeYmFAuYlcbEaPxI7B4QQUG1pu1xaaW8hdmw10irZsrtF-1N8IzN5lV0hbj17FDsz45nxPAl5K4pIWxMnTLsoZ8oGwayMHZMyYHczy3WCBc6nk2R8rr5N4-kO-d3XwmBaZS8TG0Fd1A595AeouLQA5a4_zi8ZTo3C6Go_QqNli2O__gVPtsWHoy9A33dCHH49-zxm3VQB5pThS6ZNJKy3plCmMC5wpcGIyIVLolSHNElFbgS3uY-d4s7YEIy0woPW0yLxKccpESDyb4HijfCxp6d68Olg1EzxtG9gJM0BqLm5ksLITbV3bctuZ2JuhWMbLXe4R-515in91PLTfbLjqwfkdjuwcv2QzPHpChKIdulddCK-U5wYhz43mlcFRT3ZuhcpsKanucVSE-AsWiIALfuU-dmatpmzBQU2wQS0erWgYba6qll-uSodXdTl7BE5vxHsPia7VV35J4TK2JsiSJVaMJJSKy2ACGWlKoTwIRIj8r5Haea6huY4V2OWNYF1abIB-yPyegCdt108_gW039Ml6y7yIrtmuxF5NSwDXjGukleImowbjYIv5vAJvUHPYTNs4r25UpUXTTPvWGJkE37mTU_5vzbfPuLT_x_xJbkzPjs9yU6OJsfPyF2BFghW36t9srv8ufLPwX5a2hcN01Ly46ZvyR9UFTF2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbhMx0KpSgbggniJQwLwkLlbWj117DwgBbdRSCBWiUm_btdcWK0W7KUlA-TW-jpnsoyRC3Hr2aO2dGc-M50nIS1FE2po4YdpFOVM2CGZl7JiUAbubWa4TLHD-PEkOT9XHs_hsh_zuamEwrbKTiWtBXdQOfeQjVFxagHLXo9CmRZzsj9_OLhhOkMJIazdOo2GRY7_6Bc-3-ZujfaD1KyHGB98-HLJ2wgBzyvAF0yYS1ltTKFMYF7jSYFDkwiVRqkOapCI3gtvcx05xZ2wIRlrhQQNqkfiU48QIEP-7Gl9FA7L7_mBy8rX38GAMTfG0a2ckzQiU3kxJYeSmEry0bLfzMreCs2udN75FbrbGKn3XcNdtsuOrO-RaM75ydZfM8CEL8oi2yV50Ir5QnB-HHjiaVwVFrdk4Gykwqqe5xcIT4DNaIgAtuwT66Yo2ebQFBabBdLR6OadhuvxZs_xiWTo6r8vpPXJ6Jfi9TwZVXfkHhMrYmyJIlVowmVIrLYAIZaUqhPAhEkPyukNp5tr25jhlY5qtw-zSZD32h-R5Dzprenr8C2ivo0vWXut5dsmEQ_KsXwa8YpQlrxA1GTcaxWDM4RN6g579ZtjSe3OlKr-vW3vHEuOc8DMvOsr_tfn2ER_-_4hPyXW4Idmno8nxI3JDoDmCpfhqjwwWP5b-MRhTC_uk5VpKzq_6ovwBa3o3EQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linkage+between+N2O+emission+and+functional+gene+abundance+in+an+intensively+managed+calcareous+fluvo-aquic+soil&rft.jtitle=Scientific+reports&rft.au=Yang%2C+Liuqing&rft.au=Zhang%2C+Xiaojun&rft.au=Ju%2C+Xiaotang&rft.date=2017-02-24&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=7&rft_id=info:doi/10.1038%2Fsrep43283&rft_id=info%3Apmid%2F28233823&rft.externalDocID=PMC5324132 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |