Gastrointestinal safety and anti-inflammatory effects of a hydrogen sulfide-releasing diclofenac derivative in the rat

Gastrointestinal damage caused by nonsteroidal anti-inflammatory drugs (NSAIDs) remains a significant clinical problem. Hydrogen makes an important contribution to mucosal defense, and NSAIDs can suppress its synthesis. In this study, we evaluated the gastrointestinal safety and anti-inflammatory ef...

Full description

Saved in:
Bibliographic Details
Published inGastroenterology (New York, N.Y. 1943) Vol. 132; no. 1; p. 261
Main Authors Wallace, John L, Caliendo, Giuseppe, Santagada, Vincenzo, Cirino, Giuseppe, Fiorucci, Stefano
Format Journal Article
LanguageEnglish
Published United States 01.01.2007
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Gastrointestinal damage caused by nonsteroidal anti-inflammatory drugs (NSAIDs) remains a significant clinical problem. Hydrogen makes an important contribution to mucosal defense, and NSAIDs can suppress its synthesis. In this study, we evaluated the gastrointestinal safety and anti-inflammatory effects of a novel "HS-NSAID" (ATB-337) that consists of diclofenac linked to a hydrogen sulfide-releasing moiety. The gastrointestinal injury-inducing effects of single or repeated administration of diclofenac versus ATB-337 were compared in rats, as were their effects on prostaglandin synthesis and cyclooxygenase-1 and -2 activities. The ability of these drugs to reduce carrageenan-induced paw edema and to elicit leukocyte adherence to the vascular endothelium (intravital microscopy) were also examined in rats. Diclofenac (10-50 micromol/kg) dose-dependently damaged the stomach, while ATB-337 did not. Repeated administration of diclofenac caused extensive small intestinal damage and reduced hematocrit by 50%. ATB-337 induced >90% less intestinal damage and had no effect on hematocrit. Diclofenac, but not ATB-337, elevated gastric granulocyte infiltration and expression of tumor necrosis factor alpha, lymphocyte function-associated antigen 1, and intercellular adhesion molecule 1. ATB-337 inhibited cycloxygenase-1 and cyclooxygenase-2 activity as effectively as diclofenac. ATB-337 did not induce leukocyte adherence, whereas diclofenac did, and was more potent at reducing paw edema. An HS-NSAID spares the gastric mucosa of injury despite markedly suppressing prostaglandin synthesis. This effect may be related to hydrogen sulfide-mediated inhibition of tumor necrosis factor-alpha expression and of the leukocyte adherence to vascular endothelium normally induced by cyclooxygenase inhibitors.
ISSN:0016-5085
DOI:10.1053/j.gastro.2006.11.042