DNA Compaction and Charge Neutralization Regulated by Divalent Ions in very Low pH Solution

DNA conformation is strongly dependent on the valence of counterions in solution, and a valence of at least three is needed for DNA compaction. Recently, we directly demonstrated DNA compaction and its regulation, mediated by divalent cations, by lowering the pH of a solution. In the present study,...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 11; no. 2; p. 337
Main Authors Gao, Tianyong, Zhang, Wei, Wang, Yanwei, Yang, Guangcan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 15.02.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:DNA conformation is strongly dependent on the valence of counterions in solution, and a valence of at least three is needed for DNA compaction. Recently, we directly demonstrated DNA compaction and its regulation, mediated by divalent cations, by lowering the pH of a solution. In the present study, we found that the critical electrophoretic mobility of DNA is promoted to around -1.0 × 10 cm² V s to incur DNA compaction or condensation in a tri- and tetravalent counterions solution, corresponding to an about 89% neutralized charge fraction of DNA. This is also valid for DNA compaction by divalent counterions in a low pH solution. It is notable that the critical charge neutralization of DNA for compaction is only about 1% higher than the saturated charge fraction of DNA in a mild divalent ion solution. We also found that DNA compaction by divalent cations at low pH is weakened and even decondensed with an increasing concentration of counterions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym11020337