Small Interfering RNAs Induce Macrophage Migration Inhibitory Factor Production and Proliferation in Breast Cancer Cells via a Double-Stranded RNA-Dependent Protein Kinase-Dependent Mechanism

Small interfering RNAs (siRNAs) represent a novel tool to induce gene silencing in mammalian cells and clinical trials are currently ongoing to assess the therapeutic efficacy of siRNAs in various human diseases, including age-related macular degeneration and respiratory syncytial virus infection. H...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 180; no. 11; pp. 7125 - 7133
Main Authors Armstrong, Michelle E, Gantier, Michael, Li, Lili, Chung, Wen Y, McCann, Amanda, Baugh, John A, Donnelly, Seamas C
Format Journal Article
LanguageEnglish
Published United States Am Assoc Immnol 01.06.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Small interfering RNAs (siRNAs) represent a novel tool to induce gene silencing in mammalian cells and clinical trials are currently ongoing to assess the therapeutic efficacy of siRNAs in various human diseases, including age-related macular degeneration and respiratory syncytial virus infection. However, previously reported off-target, nonspecific effects of siRNAs, including activation of type I IFNs and proinflammatory cytokines, remain an outstanding concern regarding use of these agents in vivo. Macrophage-migration inhibitory factor (MIF) is a pleiotropic cytokine with well-described roles in cell proliferation, tumorigenesis, and angiogenesis and represents a target gene for siRNA-based therapy in the treatment of breast cancer. However, in this study we describe an increase in MIF production from mammary adenocarcinoma (MCF-7) cells following transfection with MIF siRNA and various control siRNAs. This effect was shown to be dose-dependent and was attenuated in the presence of a double-stranded RNA-dependent protein kinase inhibitor, 2-aminopurine. Furthermore, treatment of MCF-7 cells with poly(I:C) also stimulated a PKR-dependent increase in MIF production from MCF-7 cells. The biological consequence of the siRNA-induced increase in MIF production from MCF-7 cells was a PKR-dependent increase in proliferation of breast cancer cells. Furthermore, in cDNAs prepared from a primary human breast cancer cohort, we demonstrated a significant correlation (Spearman rank correlation coefficient, r = 0.50, p < 0.0001, n = 63) between PKR- and MIF-mRNA expression. In conclusion, this study highlights the potential biological consequences of off-target, nonspecific effects of siRNAs and underlines the safety concerns regarding the use of siRNAs in the treatment of human diseases, such as cancer.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.180.11.7125