Fundamental and Practical Feasibility of Electrocardiogram Reconstruction from Photoplethysmogram

Electrocardiogram (ECG) reconstruction from contact photoplethysmogram (PPG) would be transformative for cardiac monitoring. We investigated the fundamental and practical feasibility of such reconstruction by first replicating pioneering work in the field, with the aim of assessing the methods and e...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 7; p. 2100
Main Authors Slapničar, Gašper, Su, Jie, Wang, Wenjin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.04.2024
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s24072100

Cover

Loading…
More Information
Summary:Electrocardiogram (ECG) reconstruction from contact photoplethysmogram (PPG) would be transformative for cardiac monitoring. We investigated the fundamental and practical feasibility of such reconstruction by first replicating pioneering work in the field, with the aim of assessing the methods and evaluation metrics used. We then expanded existing research by investigating different cycle segmentation methods and different evaluation scenarios to robustly verify both fundamental feasibility, as well as practical potential. We found that reconstruction using the discrete cosine transform (DCT) and a linear ridge regression model shows good results when PPG and ECG cycles are semantically aligned—the ECG R peak and PPG systolic peak are aligned—before training the model. Such reconstruction can be useful from a morphological perspective, but loses important physiological information (precise R peak location) due to cycle alignment. We also found better performance when personalization was used in training, while a general model in a leave-one-subject-out evaluation performed poorly, showing that a general mapping between PPG and ECG is difficult to derive. While such reconstruction is valuable, as the ECG contains more fine-grained information about the cardiac activity as well as offers a different modality (electrical signal) compared to the PPG (optical signal), our findings show that the usefulness of such reconstruction depends on the application, with a trade-off between morphological quality of QRS complexes and precise temporal placement of the R peak. Finally, we highlight future directions that may resolve existing problems and allow for reliable and robust cross-modal physiological monitoring using just PPG.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s24072100