An Escherichia coli Expressed Multi-Disulfide Bonded SARS-CoV-2 RBD Shows Native-like Biophysical Properties and Elicits Neutralizing Antisera in a Mouse Model

A large-scale Escherichia coli (E. coli) production of the receptor-binding domain (RBD) of the SARS-CoV-2 could yield a versatile and low-cost antigen for a subunit vaccine. Appropriately folded antigens can potentially elicit the production of neutralizing antisera providing immune protection agai...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 23; no. 24; p. 15744
Main Authors Brindha, Subbaian, Yoshizue, Takahiro, Wongnak, Rawiwan, Takemae, Hitoshi, Oba, Mami, Mizutani, Tetsuya, Kuroda, Yutaka
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 12.12.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A large-scale Escherichia coli (E. coli) production of the receptor-binding domain (RBD) of the SARS-CoV-2 could yield a versatile and low-cost antigen for a subunit vaccine. Appropriately folded antigens can potentially elicit the production of neutralizing antisera providing immune protection against the virus. However, E. coli expression using a standard protocol produces RBDs with aberrant disulfide bonds among the RBD’s eight cysteines resulting in the expression of insoluble and non-native RBDs. Here, we evaluate whether E. coli expressing RBD can be used as an antigen candidate for a subunit vaccine. The expressed RBD exhibited native-like structural and biophysical properties as demonstrated by analytical RP-HPLC, circular dichroism, fluorescence, and light scattering. In addition, our E. coli expressed RBD binds to hACE2, the host cell’s receptor, with a binding constant of 7.9 × 10−9 M, as indicated by biolayer interferometry analysis. Our E. coli-produced RBD elicited a high IgG titer in Jcl:ICR mice, and the RBD antisera inhibited viral growth, as demonstrated by a pseudovirus-based neutralization assay. Moreover, the increased antibody level was sustained for over 15 weeks after immunization, and a high percentage of effector and central memory T cells were generated. Overall, these results show that E. coli-expressed RBDs can elicit the production of neutralizing antisera and could potentially serve as an antigen for developing an anti-SARS-CoV-2 subunit vaccine.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms232415744