GIANT MOLECULAR CLOUD EVOLUTIONS IN THE NEARBY SPIRAL GALAXY M33
We present a giant molecular cloud (GMC) catalog of M33, containing 71 GMCs in total, based on wide-field and high-sensitivity CO(J = 3-2) observations with a spatial resolution of 100 pc using the ASTE 10 m telescope. Employing archival optical data, we identify 75 young stellar groups (YSGs) from...
Saved in:
Published in | The Astrophysical journal Vol. 761; no. 1; pp. 1 - 23 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP
10.12.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We present a giant molecular cloud (GMC) catalog of M33, containing 71 GMCs in total, based on wide-field and high-sensitivity CO(J = 3-2) observations with a spatial resolution of 100 pc using the ASTE 10 m telescope. Employing archival optical data, we identify 75 young stellar groups (YSGs) from the excess of the surface stellar density, and estimate their ages by comparing with stellar evolution models. A spatial comparison among the GMCs, YSGs, and H II regions enable us to classify GMCs into four categories: Type A, showing no sign of massive star formation (SF); Type B, being associated only with H II regions; Type C, with both H II regions and <10 Myr old YSGs; and Type D, with both H II regions and 10-30 Myr YSGs. Out of 65 GMCs (discarding those at the edges of the observed fields), 1 (1%), 13 (20%), 29 (45%), and 22 (34%) are Types A, B, C, and D, respectively. We interpret these categories as stages in a GMC evolutionary sequence. Assuming that the timescale for each evolutionary stage is proportional to the number of GMCs, the lifetime of a GMC with a mass >10 super(5) M sub([middot in circle]) is estimated to be 20-40 Myr. In addition, we find that the dense gas fraction as traced by the CO(J = 3-2)/CO(J = 1-0) ratio is enhanced around SF regions. This confirms a scenario where dense gas is preferentially formed around previously generated stars, and will be the fuel for the next stellar generation. In this way, massive SF gradually propagates in a GMC until gas is exhausted. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.1088/0004-637x/761/1/37 |