Study on the Electrospinning of Gelatin/Pullulan Composite Nanofibers

In this study, gelatin and pullulan were successfully prepared as a novel type of protein-polysaccharide composite nanofibrous membrane by electrospinning at room temperature with deionized water as the solvent. The effects of gelatin content on the properties of the solution, as well as the morphol...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 11; no. 9; p. 1424
Main Authors Wang, Yuanduo, Guo, Ziyang, Qian, Yongfang, Zhang, Zhen, Lyu, Lihua, Wang, Ying, Ye, Fang
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 30.08.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, gelatin and pullulan were successfully prepared as a novel type of protein-polysaccharide composite nanofibrous membrane by electrospinning at room temperature with deionized water as the solvent. The effects of gelatin content on the properties of the solution, as well as the morphology of the resultant nanofibers, were investigated. Scanning electron microscopy (SEM) was utilized to observe the surface morphology. Fourier transform infrared spectroscopy (FTIR) was used to study the interaction between gelatin and pullulan. Incorporation of pullulan with gelatin will improve the spinnability of the mixed aqueous solution due to lower surface tension. Moreover, the conductivity of the solution had a greater effect on the fiber diameters, and the as-spun fibers became thinner as the viscosity and the surface tension increased due to the addition of the polyelectrolyte gelatin. Gelatin and pullulan formed hydrogen bonds, and the intermolecular hydrogen bonds increased while the intramolecular hydrogen bond decreased, which resulted in better mechanical properties. The electrospun gelatin/pullulan nanofibers could mimic both the structure and the composition of the extracellular matrix, and thus could be applied in tissue engineering.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym11091424