Dynamic allocation and transfer of non-structural carbohydrates, a possible mechanism for the explosive growth of Moso bamboo (Phyllostachys heterocycla)

Moso bamboo can rapidly complete its growth in both height and diameter within only 35-40 days after shoot emergence. However, the underlying mechanism for this "explosive growth" remains poorly understood. We investigated the dynamics of non-structural carbohydrates (NSCs) in shoots and a...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 6; no. 1; p. 25908
Main Authors Song, Xinzhang, Peng, Changhui, Zhou, Guomo, Gu, Honghao, Li, Quan, Zhang, Chao
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 16.05.2016
Online AccessGet full text

Cover

Loading…
More Information
Summary:Moso bamboo can rapidly complete its growth in both height and diameter within only 35-40 days after shoot emergence. However, the underlying mechanism for this "explosive growth" remains poorly understood. We investigated the dynamics of non-structural carbohydrates (NSCs) in shoots and attached mature bamboos over a 20-month period. The results showed that Moso bamboos rapidly completed their height and diameter growth within 38 days. At the same time, attached mature bamboos transferred almost all the NSCs of their leaves, branches, and especially trunks and rhizomes to the "explosively growing" shoots via underground rhizomes for the structural growth and metabolism of shoots. Approximately 4 months after shoot emergence, this transfer stopped when the leaves of the young bamboos could independently provide enough photoassimilates to meet the carbon demands of the young bamboos. During this period, the NSC content of the leaves, branches, trunks and rhizomes of mature bamboos declined by 1.5, 23, 28 and 5 fold, respectively. The trunk contributed the most NSCs to the shoots. Our findings provide new insight and a possible rational mechanism explaining the "explosive growth" of Moso bamboo and shed new light on understanding the role of NSCs in the rapid growth of Moso bamboo.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/srep25908