Surface-initiated self-healing of polymers in aqueous media

Polymeric materials that intrinsically heal at damage sites under wet or moist conditions are urgently needed for biomedical and environmental applications. Although hydrogels with self-mending properties have been engineered by means of mussel-inspired metal-chelating catechol-functionalized polyme...

Full description

Saved in:
Bibliographic Details
Published inNature materials Vol. 13; no. 9; pp. 867 - 872
Main Authors Ahn, B Kollbe, Lee, Dong Woog, Israelachvili, Jacob N, Waite, J Herbert
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 01.09.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Polymeric materials that intrinsically heal at damage sites under wet or moist conditions are urgently needed for biomedical and environmental applications. Although hydrogels with self-mending properties have been engineered by means of mussel-inspired metal-chelating catechol-functionalized polymer networks, biological self-healing in wet conditions, as occurs in self-assembled holdfast proteins in mussels and other marine organisms, is generally thought to involve more than reversible metal chelates. Here we demonstrate self-mending in metal-free water of synthetic polyacrylate and polymethacrylate materials that are surface-functionalized with mussel-inspired catechols. Wet self-mending of scission in these polymers is initiated and accelerated by hydrogen bonding between interfacial catechol moieties, and consolidated by the recruitment of other non-covalent interactions contributed by subsurface moieties. The repaired and pristine samples show similar mechanical properties, suggesting that the triggering of complete self-healing is enabled underwater by the formation of extensive catechol-mediated interfacial hydrogen bonds.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1476-1122
1476-4660
DOI:10.1038/nmat4037