Influences of Hyperbranched Polyester Modification on the Crystallization Kinetics of Isotactic Polypropylene/Graphene Oxide Composites

In this study, the hyperbranched polyester grafted graphene oxide (GO-H202) was synthesized, and the isotactic polypropylene/graphene oxide (iPP/GO) composites were prepared. Results of X-ray photoelectron spectra (XPS), Fourier transform infrared (FT-IR), and transmission electron microscopy (TEM)...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 11; no. 3; p. 433
Main Authors Hao, Zengheng, Li, Lu, Yang, Bo, Sheng, Xingyue, Liao, Xia, He, Leilei, Liu, Pan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 06.03.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, the hyperbranched polyester grafted graphene oxide (GO-H202) was synthesized, and the isotactic polypropylene/graphene oxide (iPP/GO) composites were prepared. Results of X-ray photoelectron spectra (XPS), Fourier transform infrared (FT-IR), and transmission electron microscopy (TEM) revealed the successful synthesis of GO-H202, while thermogravimetric analysis (TGA) indicated that the weight ratio of grafting was about 35 wt %. Differential scanning calorimetry (DSC) and polarized optical microscopy (POM) were carried out to investigate the role of GO and GO-H202 on the crystallization kinetics of the composites. Results suggested that the addition of GO enhanced the nucleation rate and crystallizability of the composites, while GO-H202 exhibited a higher crystallization acceleration effect compared to neat GO; results of isothermal crystallization kinetics and self-nucleation isothermal crystallization kinetics showed that both the overall crystallization rate and crystal growth rate increase after the addition of GO and GO-H202, and the crystallization acceleration of GO-H202 became evidently stronger compared to GO. Moreover, the variation trends of Avrami exponent with the isothermal crystallization temperature changed significantly after the addition of GO or GO-H202, which might imply that the addition of GO and GO-H202 lead to different crystallization dimensionalities during the isothermal crystallization of the composites. The related mechanism was also discussed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym11030433