Additive Manufacturing of Sensors for Military Monitoring Applications

The US Department of Defense (DoD) realizes the many uses of additive manufacturing (AM) as it has become a common fabrication technique for an extensive range of engineering components in several industrial sectors. 3D Printed (3DP) sensor technology offers high-performance features as a way to tra...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 13; no. 9; p. 1455
Main Authors Bird, David T, Ravindra, Nuggehalli M
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 30.04.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The US Department of Defense (DoD) realizes the many uses of additive manufacturing (AM) as it has become a common fabrication technique for an extensive range of engineering components in several industrial sectors. 3D Printed (3DP) sensor technology offers high-performance features as a way to track individual warfighters on the battlefield, offering protection from threats such as weaponized toxins, bacteria or virus, with real-time monitoring of physiological events, advanced diagnostics, and connected feedback. Maximum protection of the warfighter gives a distinct advantage over adversaries by providing an enhanced awareness of situational threats on the battle field. There is a need to further explore aspects of AM such as higher printing resolution and efficiency, with faster print times and higher performance, sensitivity and optimized fabrication to ensure that soldiers are more safe and lethal to win our nation's wars and come home safely. A review and comparison of various 3DP techniques for sensor fabrication is presented.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:2073-4360
2073-4360
DOI:10.3390/polym13091455