Achieving Soil Organic Carbon Sequestration with Conservation Agricultural Systems in the Southeastern United States

Conservation management of degraded land has the potential to build soil fertility, restore soil functions, and mitigate greenhouse gas emissions as a consequence of surface soil organic matter accumulation. Literature from the southeastern United States was reviewed and synthesized to: (i) quantita...

Full description

Saved in:
Bibliographic Details
Published inSoil Science Society of America journal Vol. 74; no. 2; pp. 347 - 357
Main Author Franzluebbers, Alan J
Format Journal Article
LanguageEnglish
Published Madison Soil Science Society 01.03.2010
American Society of Agronomy
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Conservation management of degraded land has the potential to build soil fertility, restore soil functions, and mitigate greenhouse gas emissions as a consequence of surface soil organic matter accumulation. Literature from the southeastern United States was reviewed and synthesized to: (i) quantitatively evaluate the magnitude and rate of soil organic C (SOC) sequestration with conservation agricultural management; (ii) evaluate how conservation management affects surface SOC accumulation and its implications on ecosystem services; and (iii) recommend practical soil sampling strategies based on spatial and temporal issues to improve the detection of statistically significant SOC sequestration. Soil organic C sequestration was 0.45 ± 0.04 Mg C ha–1 yr–1 (mean ± standard error, n = 147, 20 ± 1 cm depth, 11 ± 1 yr) with conservation tillage compared with conventional tillage cropland. Establishment of perennial pastures sequestered 0.84 ± 0.11 Mg C ha–1 yr–1 (n = 35, 25 ± 2 cm depth, 17 ± 1 yr). Stratification of SOC with depth was common under conservation agricultural management and appears to be integrally linked to abatement of soil erosion, improvement in water quality, and SOC sequestration. Sampling of conservation management systems should ideally occur repeatedly with time in controlled and replicated experiments, but there is also an urgent need for chronosequence and paired-field surveys of SOC on working farms in the region to validate and expand the scope of inference of experimental results. Landowners in the southeastern United States have great potential to restore soil fertility and mitigate greenhouse gas emissions with the adoption of and improvement in conservation agricultural systems (e.g., continuous no-till, high-residue crop rotations, high organic matter inputs).
Bibliography:http://dx.doi.org/10.2136/sssaj2009.0079
http://hdl.handle.net/10113/41306
All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0361-5995
1435-0661
DOI:10.2136/sssaj2009.0079