Multiple Graph Label Propagation by Sparse Integration

Graph-based approaches have been most successful in semisupervised learning. In this paper, we focus on label propagation in graph-based semisupervised learning. One essential point of label propagation is that the performance is heavily affected by incorporating underlying manifold of given data in...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 24; no. 12; pp. 1999 - 2012
Main Authors Karasuyama, Masayuki, Mamitsuka, Hiroshi
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Graph-based approaches have been most successful in semisupervised learning. In this paper, we focus on label propagation in graph-based semisupervised learning. One essential point of label propagation is that the performance is heavily affected by incorporating underlying manifold of given data into the input graph. The other more important point is that in many recent real-world applications, the same instances are represented by multiple heterogeneous data sources. A key challenge under this setting is to integrate different data representations automatically to achieve better predictive performance. In this paper, we address the issue of obtaining the optimal linear combination of multiple different graphs under the label propagation setting. For this problem, we propose a new formulation with the sparsity (in coefficients of graph combination) property which cannot be rightly achieved by any other existing methods. This unique feature provides two important advantages: 1) the improvement of prediction performance by eliminating irrelevant or noisy graphs and 2) the interpretability of results, i.e., easily identifying informative graphs on classification. We propose efficient optimization algorithms for the proposed approach, by which clear interpretations of the mechanism for sparsity is provided. Through various synthetic and two real-world data sets, we empirically demonstrate the advantages of our proposed approach not only in prediction performance but also in graph selection ability.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2013.2271327