Fluid dynamics of a pressurized fluidized bed: comparison between numerical solutions from two-fluid models and experimental results

A validation of four different two-fluid model closures was carried out to investigate the effect of gas-phase turbulence, drift velocity and three dimensionality on the fluid dynamics of a bubbling fluidized bed. At atmospheric conditions, it is verified that gas-phase turbulence has a negligible e...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering science Vol. 54; no. 3; pp. 329 - 342
Main Authors Enwald, H., Almstedt, A.E.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.02.1999
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A validation of four different two-fluid model closures was carried out to investigate the effect of gas-phase turbulence, drift velocity and three dimensionality on the fluid dynamics of a bubbling fluidized bed. At atmospheric conditions, it is verified that gas-phase turbulence has a negligible effect for the bed material and operating conditions used in the investigation, whereas the validation shows some evidence that the gas-phase turbulence has a significant contribution for higher pressures. The drift velocity shows no noticeable effect on the results at any pressure. A comparison between two- and three-dimensional calculations at atmospheric pressure shows that the three-dimensional effects appear to be considerable.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0009-2509
1873-4405
DOI:10.1016/S0009-2509(98)00187-0