Q-Based Design Equations and Loss Limits for Resonant Metamaterials and Experimental Validation

Practical design parameters of resonant metamaterials, such as loss tangent, are derived in terms of the quality factor Q of the resonant effective medium permeability or permittivity. Through electromagnetic simulations of loop-based resonant particles, it is first shown that the Q of the effective...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on antennas and propagation Vol. 56; no. 1; pp. 127 - 132
Main Authors Cummer, S.A., Popa, B.-I., Hand, T.H.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.01.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Practical design parameters of resonant metamaterials, such as loss tangent, are derived in terms of the quality factor Q of the resonant effective medium permeability or permittivity. Through electromagnetic simulations of loop-based resonant particles, it is first shown that the Q of the effective medium response is essentially equal to the Q of an individual resonant particle. This implies that by measuring the Q of a single fabricated metamaterial particle, the effective permeability or permittivity of a meta-material can be estimated simply and accurately without complex simulations, fabrication, or measurements. Experimental validation shows that the frequency-dependent complex permeability analytically estimated from the measured Q of a single fabricated self-resonant loop agrees with the complex permeability extracted from S parameter measurements of a metamaterial slab to better than 20 %. This Q equivalence reduces the design of a metamaterial to meet a given loss constraint to the simpler problem of the design of a resonant particle to meet a specific Q constraint. The Q-based analysis also yields simple analytical expressions for estimating the loss tangent of a planar loop magnetic metamaterial due to ohmic losses. It is shown that tan delta ap 0.001 is a strong lower bound for magnetic loss tangents for frequencies not too far from 1 GHz. The ohmic loss of the metamaterial varies inversely with the electrical size of the metamaterial particle, indicating that there is a loss penalty for reducing the particle size at a fixed frequency.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2007.912959