Open-Ended Coaxial Dielectric Probe Effective Penetration Depth Determination

We have performed a series of experiments, which demonstrate the effect of open-ended coaxial diameter on the depth of penetration. We used a two-layer configuration of a liquid and movable cylindrical piece of either Teflon or acrylic. The technique accurately demonstrates the depth in a sample for...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on microwave theory and techniques Vol. 64; no. 3; pp. 915 - 923
Main Authors Meaney, Paul M., Gregory, Andrew P., Seppala, Jan, Lahtinen, Tapani
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We have performed a series of experiments, which demonstrate the effect of open-ended coaxial diameter on the depth of penetration. We used a two-layer configuration of a liquid and movable cylindrical piece of either Teflon or acrylic. The technique accurately demonstrates the depth in a sample for which a given probe diameter provides a reasonable measure of the bulk dielectric properties for a heterogeneous volume. In addition, we have developed a technique for determining the effective depth for a given probe diameter size. Using a set of simulations mimicking four 50- Ω coaxial cable diameters, we demonstrate that the penetration depth in both water and saline has a clear dependence on the probe diameter, but is remarkably uniform over frequency and with respect to the intervening liquid permittivity. Two different 50- Ω commercial probes were similarly tested and confirm these observations. This result has significant implications to a range of dielectric measurements, most notably in the area of tissue property studies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2016.2519027