Multiple Testing of Composite Null Hypotheses in Heteroscedastic Models
In large-scale studies, the true effect sizes often range continuously from zero to small to large, and are observed with heteroscedastic errors. In practical situations where the failure to reject small deviations from the null is inconsequential, specifying an indifference region (or forming compo...
Saved in:
Published in | Journal of the American Statistical Association Vol. 107; no. 498; pp. 673 - 687 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Alexandria
Taylor & Francis Group
01.06.2012
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In large-scale studies, the true effect sizes often range continuously from zero to small to large, and are observed with heteroscedastic errors. In practical situations where the failure to reject small deviations from the null is inconsequential, specifying an indifference region (or forming composite null hypotheses) can greatly reduce the number of unimportant discoveries in multiple testing. The heteroscedasticity issue poses new challenges for multiple testing with composite nulls. In particular, the conventional framework in multiple testing, which involves rescaling or standardization, is likely to distort the scientific question. We propose the concept of a composite null distribution for heteroscedastic models and develop an optimal testing procedure that minimizes the false nondiscovery rate, subject to a constraint on the false discovery rate. The proposed approach is different from conventional methods in that the effect size, statistical significance, and multiplicity issues are addressed integrally. The external information of heteroscedastic errors is incorporated for optimal simultaneous inference. The new features and advantages of our approach are demonstrated using both simulated and real data. The numerical studies demonstrate that our new procedure enjoys superior performance with greater accuracy and better interpretability of results. |
---|---|
AbstractList | In large-scale studies, the true effect sizes often range continuously from zero to small to large, and are observed with heteroscedastic errors. In practical situations where the failure to reject small deviations from the null is inconsequential, specifying an indifference region (or forming composite null hypotheses) can greatly reduce the number of unimportant discoveries in multiple testing. The heteroscedasticity issue poses new challenges for multiple testing with composite nulls. In particular, the conventional framework in multiple testing, which involves rescaling or standardization, is likely to distort the scientific question. We propose the concept of a composite null distribution for heteroscedastic models and develop an optimal testing procedure that minimizes the false nondiscovery rate, subject to a constraint on the false discovery rate. The proposed approach is different from conventional methods in that the effect size, statistical significance, and multiplicity issues are addressed integrally. The external information of heteroscedastic errors is incorporated for optimal simultaneous inference. The new features and advantages of our approach are demonstrated using both simulated and real data. The numerical studies demonstrate that our new procedure enjoys superior performance with greater accuracy and better interpretability of results. In large-scale studies, the true effect sizes often range continuously from zero to small to large, and are observed with heteroscedastic errors. In practical situations where the failure to reject small deviations from the null is inconsequential, specifying an indifference region (or forming composite null hypotheses) can greatly reduce the number of unimportant discoveries in multiple testing. The heteroscedasticity issue poses new challenges for multiple testing with composite nulls. In particular, the conventional framework in multiple testing, which involves rescaling or standardization, is likely to distort the scientific question. We propose the concept of a composite null distribution for heteroscedastic models and develop an optimal testing procedure that minimizes the false nondiscovery rate, subject to a constraint on the false discovery rate. The proposed approach is different from conventional methods in that the effect size, statistical significance, and multiplicity issues are addressed integrally. The external information of heteroscedastic errors is incorporated for optimal simultaneous inference. The new features and advantages of our approach are demonstrated using both simulated and real data. The numerical studies demonstrate that our new procedure enjoys superior performance with greater accuracy and better interpretability of results. [PUBLICATION ABSTRACT] |
Author | Sun, Wenguang McLain, Alexander C. |
Author_xml | – sequence: 1 fullname: Sun, Wenguang – sequence: 2 fullname: McLain, Alexander C |
BookMark | eNqFkktrVDEYhoO0YFv9B4oH3LiZMfeLGymD7Qi9LNqCu5Dm5NQMmeSY5CDz781wqkg3k01Cvvf5LnlzCo5iig6AdwguEZTwM0QcI8rUEkOEl5xTBtkrcIIYEQss6I-j_86vwWkpG9iWkPIEXF5PofoxuO7elerjU5eGbpW2Yyq-uu5mCqFb78ZUf7riSudjt3bV5VSs600DbHedehfKG3A8mFDc2-f9DDxcfLtfrRdXt5ffV-dXC0slrAtuuHLICdNLKuij4kQyJgVRDBncbqlQSnLHrbKU20cmEDSKKNjjgTNOETkDn-a8Y06_ptay3vrWSwgmujQVjSQkUBEp6GEpxkhSqhRp0o8vpJs05dgG0QgSxhFkcl-bzirb5i_ZDXrMfmvyron03gj91wi9N0LPRjTsywvM-mqqT7Fm48Mh-P0Mb0pN-V9BTDBRHOIW_zrHfRxS3prfKYdeV7MLKQ_ZROuLJgcqfJgzDCZp85Qb8HDXBLx9EclIe88_uNSyqw |
CODEN | JSTNAL |
CitedBy_id | crossref_primary_10_1080_03610926_2017_1361982 crossref_primary_10_1186_s12887_016_0596_8 crossref_primary_10_1111_caje_12249 crossref_primary_10_1111_ectj_12092 crossref_primary_10_1007_s00362_014_0640_4 crossref_primary_10_1016_j_csda_2016_02_016 crossref_primary_10_1080_01621459_2020_1840992 crossref_primary_10_1016_j_jspi_2023_106119 crossref_primary_10_1146_annurev_economics_063016_104355 crossref_primary_10_1080_01621459_2018_1497499 crossref_primary_10_1080_02664763_2024_2344260 crossref_primary_10_1080_01621459_2018_1497496 crossref_primary_10_1111_biom_12586 crossref_primary_10_1080_00224065_2024_2393869 crossref_primary_10_1111_insr_12098 crossref_primary_10_1080_03610926_2020_1752725 crossref_primary_10_1080_24725854_2024_2330077 crossref_primary_10_1080_00401706_2019_1575284 crossref_primary_10_3982_ECTA19304 crossref_primary_10_1016_j_jspi_2014_04_004 crossref_primary_10_1080_00224065_2023_2210320 crossref_primary_10_1111_rssb_12304 crossref_primary_10_1002_nav_22008 crossref_primary_10_1016_j_csda_2015_12_013 |
Cites_doi | 10.1111/j.1467-9868.2004.00430.x 10.1198/jasa.2010.tm09329 10.1198/016214507000000941 10.1214/ss/1177011945 10.1214/aos/1015362191 10.1214/009053607000000334 10.1105/tpc.104.023382 10.1214/aos/1074290335 10.1198/016214501753382129 10.1214/07-STS236 10.1198/016214508000000328 10.1016/j.spl.2006.04.016 10.1111/j.1541-0420.2006.00704.x 10.1214/10-AOS844 10.1198/016214507000000167 10.1214/08-AOAS158 10.1111/1467-9868.00347 10.1198/jasa.2009.tm08415 10.1214/aos/1176348248 10.1089/106652701300099074 10.1198/016214504000000089 10.1214/aos/1015362192 10.1007/s10463-009-0220-x 10.1214/09-AOS696 10.1214/009053607000000884 10.1080/02331889008802238 10.1111/1467-9469.00072 10.1214/aos/1176349271 10.1111/1467-9868.00346 10.1080/01621459.1999.10474186 10.1214/aos/1013699998 10.1198/016214504000001907 10.1198/016214507000000545 10.1214/009053604000000283 10.1214/009053607000000028 10.1198/016214507000000987 10.1111/j.2517-6161.1995.tb02031.x 10.1111/j.1467-9868.2007.00645.x 10.1111/j.1467-9868.2005.00515.x 10.1214/009053605000000741 10.3150/08-BEJ121 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2012 Copyright © 2012 American Statistical Association Copyright American Statistical Association Jun 2012 |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2012 – notice: Copyright © 2012 American Statistical Association – notice: Copyright American Statistical Association Jun 2012 |
DBID | FBQ AAYXX CITATION 8BJ FQK JBE K9. 7S9 L.6 |
DOI | 10.1080/01621459.2012.664505 |
DatabaseName | AGRIS CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences (IBSS) |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 1537-274X |
EndPage | 687 |
ExternalDocumentID | 2747092111 10_1080_01621459_2012_664505 23239602 664505 US201600085380 |
Genre | Feature |
GroupedDBID | -DZ -~X .-4 ..I .7F .GJ .QJ 07G 0BK 0R~ 1OL 29L 2AX 30N 3R3 4.4 5GY 5RE 692 7WY 7X7 85S 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8FL 8G5 8R4 8R5 AAAVZ AABCJ AAENE AAFWJ AAHBH AAIKQ AAJMT AAKBW AALDU AAMIU AAPUL AAQRR AAWIL ABAWQ ABBHK ABCCY ABEFU ABEHJ ABFAN ABFIM ABJCF ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABPQH ABRLO ABTAI ABUWG ABXSQ ABXUL ABXYU ABYWD ACAGQ ACGEE ACGFO ACGFS ACGOD ACHJO ACIWK ACMTB ACNCT ACTIO ACTMH ACUBG ADBBV ADCVX ADGTB ADLSF ADMHG ADODI ADULT ADYSH AEISY AENEX AEOZL AEPSL AEUMN AEUPB AEYOC AFFNX AFKRA AFQQW AFRVT AFSUE AFVYC AFXHP AGCQS AGDLA AGLEN AGLNM AGMYJ AGROQ AHDZW AHMOU AI. AIHAF AIJEM AIYEW AKBVH AKOOK ALCKM ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMATQ AMEWO AMXXU AQRUH AQUVI AVBZW AWYRJ AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BLEHA BPHCQ BPLKW BVXVI C06 CCCUG CCPQU CJ0 CRFIH CS3 D0L DGEBU DKSSO DMQIW DQDLB DSRWC DU5 DWIFK DWQXO E.L EBS ECEWR EJD E~A E~B F5P FBQ FEDTE FJW FRNLG FVMVE FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GTTXZ GUQSH H13 HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZ~ H~9 H~P IPNFZ IPSME IVXBP J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K60 K6~ K9- KQ8 KYCEM L6V LJTGL LU7 M0C M0R M0T M1P M2O M2P M4Z M7S MS~ MVM MW2 NA5 NHB NUSFT NY~ O9- OFU OK1 P-O P2P PADUT PHGZT PQBIZ PQBZA PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL RIG RNANH RNS ROSJB RTWRZ RWL RXW S-T S0X SA0 SJN SNACF TAE TAQ TBQAZ TDBHL TEJ TFL TFMCV TFT TFW TN5 TOXWX TTHFI TUROJ U5U UB9 UKHRP UPT UQL UT5 UU3 VH1 VOH WH7 WHG WZA YQT YXB YYM YYP ZCG ZGI ZGOLN ZUP ZXP ~S~ ABYAD ACTWD AELPN GROUPED_ABI_INFORM_COMPLETE IAO IEA IGG IOF IPO JSODD N95 AAGDL AAHIA AMPGV AAYXX ADXHL AMVHM CITATION PHGZM 8BJ FQK JBE K9. TASJS 7S9 L.6 |
ID | FETCH-LOGICAL-c480t-6a69e1e7ad8474b963855873951a27ad479986e6c9c46cb5710a9390d2f656413 |
ISSN | 1537-274X 0162-1459 |
IngestDate | Wed Jul 02 04:36:07 EDT 2025 Fri Jul 11 06:17:33 EDT 2025 Sat Aug 16 22:22:18 EDT 2025 Tue Jul 01 02:39:27 EDT 2025 Thu Apr 24 23:12:25 EDT 2025 Thu May 29 08:44:01 EDT 2025 Wed Dec 25 09:02:25 EST 2024 Thu Apr 03 09:45:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 498 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c480t-6a69e1e7ad8474b963855873951a27ad479986e6c9c46cb5710a9390d2f656413 |
Notes | http://dx.doi.org/10.1080/01621459.2012.664505 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1035610581 |
PQPubID | 41715 |
PageCount | 15 |
ParticipantIDs | proquest_journals_1035610581 proquest_miscellaneous_1221844993 jstor_primary_23239602 proquest_miscellaneous_1803093874 informaworld_taylorfrancis_310_1080_01621459_2012_664505 fao_agris_US201600085380 crossref_primary_10_1080_01621459_2012_664505 crossref_citationtrail_10_1080_01621459_2012_664505 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-06-01 |
PublicationDateYYYYMMDD | 2012-06-01 |
PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Alexandria |
PublicationPlace_xml | – name: Alexandria |
PublicationTitle | Journal of the American Statistical Association |
PublicationYear | 2012 |
Publisher | Taylor & Francis Group Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis Group – name: Taylor & Francis Ltd |
References | Carroll R. J. (CIT0010) 2004; 66 Efron B. (CIT0018) 2001; 96 Delaigle A. (CIT0015) 2008; 14 Langaas M. (CIT0028) 2005; 67 Storey J. D. (CIT0039) 2002; 64 Tukey J. W. (CIT0042) 1991; 6 Meinshausen N. (CIT0030) 2006; 34 Delaigle A. (CIT0012) 2006; 76 Delaigle A. (CIT0014) 2007; 102 Hall P. (CIT0024) 2007; 35 Sarkar S. K. (CIT0036) 2002; 30 Genovese C. (CIT0023) 2004; 32 Delaigle A. (CIT0013) 2008; 36 Benjamini Y. (CIT0005) 2005; 100 Cai T. T. (CIT0006) 2010; 38 Staudenmayer J. (CIT0037) 2008; 103 Fan J. (CIT0019) 1991; 19 Wang X.-F. (CIT0043) 2011; 39 Wu J. S. (CIT0044) 1993; 21 Cai T. T. (CIT0007) 2007; 35 Benjamini Y. (CIT0004) 2001; 29 Ruppert D. (CIT0035) 2007; 63 McIntyre J. (CIT0029) 2009; 63 Newton M. (CIT0031) 2001; 8 Chaudhuri P. (CIT0011) 1999; 94 Benjamini Y. (CIT0003) 1997; 24 Genovese C. (CIT0022) 2002; 64 Benjamini Y. (CIT0002) 1995; 57 Finner H. (CIT0021) 2002; 30 Efron B. (CIT0016) 2004; 99 Sun W. (CIT0041) 2007; 102 Jin J. (CIT0026) 2008; 70 Peña E. A. (CIT0032) 2011; 39 Stefanski L. (CIT0038) 1990; 21 Robins J. M. (CIT0033) 2000; 95 Jin J. (CIT0027) 2007; 102 Benjamini Y. (CIT0001) 2007; 102 Ferkingstad E. (CIT0020) 2008; 2 Caldo R. A. (CIT0009) 2004; 16 Hu J. (CIT0025) 2010; 105 Cai T. T. (CIT0008) 2009; 104 Rogosa D. (CIT0034) 2003 Efron B. (CIT0017) 2008; 23 Storey J. D. (CIT0040) 2003; 31 |
References_xml | – volume: 66 start-page: 31 issue: 1 year: 2004 ident: CIT0010 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.1467-9868.2004.00430.x – volume: 105 start-page: 1215 issue: 491 year: 2010 ident: CIT0025 publication-title: Journal of the American Statistical Association doi: 10.1198/jasa.2010.tm09329 – volume: 102 start-page: 1272 year: 2007 ident: CIT0001 publication-title: Journal of the American Statistical Association doi: 10.1198/016214507000000941 – volume-title: Accuracy of API Index and School Base Report Elements: 2003 Academic Performance Index year: 2003 ident: CIT0034 – volume: 6 start-page: 100 issue: 1 year: 1991 ident: CIT0042 publication-title: Statistical Science doi: 10.1214/ss/1177011945 – volume: 30 start-page: 220 issue: 1 year: 2002 ident: CIT0021 publication-title: The Annals of Statistics doi: 10.1214/aos/1015362191 – volume: 35 start-page: 2421 issue: 6 year: 2007 ident: CIT0007 publication-title: The Annals of Statistics doi: 10.1214/009053607000000334 – volume: 16 start-page: 2514 issue: 9 year: 2004 ident: CIT0009 publication-title: The Plant Cell doi: 10.1105/tpc.104.023382 – volume: 31 start-page: 2013 year: 2003 ident: CIT0040 publication-title: The Annals of Statistics doi: 10.1214/aos/1074290335 – volume: 96 start-page: 1151 year: 2001 ident: CIT0018 publication-title: Journal of the American Statistical Association doi: 10.1198/016214501753382129 – volume: 23 start-page: 1 issue: 1 year: 2008 ident: CIT0017 publication-title: Statistical Science doi: 10.1214/07-STS236 – volume: 103 start-page: 726 issue: 482 year: 2008 ident: CIT0037 publication-title: Journal of the American Statistical Association doi: 10.1198/016214508000000328 – volume: 76 start-page: 1594 issue: 15 year: 2006 ident: CIT0012 publication-title: Statistics and Probability Letters doi: 10.1016/j.spl.2006.04.016 – volume: 63 start-page: 483 issue: 2 year: 2007 ident: CIT0035 publication-title: Biometrics doi: 10.1111/j.1541-0420.2006.00704.x – volume: 39 start-page: 556 issue: 1 year: 2011 ident: CIT0032 publication-title: The Annals of Statistics doi: 10.1214/10-AOS844 – volume: 102 start-page: 495 issue: 478 year: 2007 ident: CIT0027 publication-title: Journal of the American Statistical Association doi: 10.1198/016214507000000167 – volume: 39 start-page: 1 issue: 10 year: 2011 ident: CIT0043 publication-title: Journal of Statistical Software – volume: 2 start-page: 714 issue: 2 year: 2008 ident: CIT0020 publication-title: The Annals of Applied Statistics doi: 10.1214/08-AOAS158 – volume: 64 start-page: 499 year: 2002 ident: CIT0022 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/1467-9868.00347 – volume: 104 start-page: 1467 issue: 488 year: 2009 ident: CIT0008 publication-title: Journal of the American Statistical Association doi: 10.1198/jasa.2009.tm08415 – volume: 19 start-page: 1257 issue: 3 year: 1991 ident: CIT0019 publication-title: The Annals of Statistics doi: 10.1214/aos/1176348248 – volume: 8 start-page: 37 year: 2001 ident: CIT0031 publication-title: Journal of Computational Biology doi: 10.1089/106652701300099074 – volume: 99 start-page: 96 issue: 465 year: 2004 ident: CIT0016 publication-title: Journal of the American Statistical Association doi: 10.1198/016214504000000089 – volume: 30 start-page: 239 year: 2002 ident: CIT0036 publication-title: The Annals of Statistics doi: 10.1214/aos/1015362192 – volume: 63 start-page: 81 issue: 1 year: 2009 ident: CIT0029 publication-title: The Annals of the Institute of Statistical Mathematics doi: 10.1007/s10463-009-0220-x – volume: 38 start-page: 100 issue: 1 year: 2010 ident: CIT0006 publication-title: The Annals of Statistics doi: 10.1214/09-AOS696 – volume: 36 start-page: 665 issue: 2 year: 2008 ident: CIT0013 publication-title: The Annals of Statistics doi: 10.1214/009053607000000884 – volume: 21 start-page: 169 issue: 2 year: 1990 ident: CIT0038 publication-title: Statistics doi: 10.1080/02331889008802238 – volume: 24 start-page: 407 year: 1997 ident: CIT0003 publication-title: Scandinavian Journal of Statistics doi: 10.1111/1467-9469.00072 – volume: 21 start-page: 1545 issue: 3 year: 1993 ident: CIT0044 publication-title: The Annals of Statistics doi: 10.1214/aos/1176349271 – volume: 64 start-page: 479 year: 2002 ident: CIT0039 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/1467-9868.00346 – volume: 94 start-page: 807 issue: 447 year: 1999 ident: CIT0011 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1999.10474186 – volume: 29 start-page: 1165 issue: 4 year: 2001 ident: CIT0004 publication-title: The Annals of Statistics doi: 10.1214/aos/1013699998 – volume: 100 start-page: 71 issue: 469 year: 2005 ident: CIT0005 publication-title: Journal of the American Statistical Association doi: 10.1198/016214504000001907 – volume: 102 start-page: 901 issue: 479 year: 2007 ident: CIT0041 publication-title: Journal of the American Statistical Association doi: 10.1198/016214507000000545 – volume: 32 start-page: 1035 issue: 3 year: 2004 ident: CIT0023 publication-title: The Annals of Statistics doi: 10.1214/009053604000000283 – volume: 35 start-page: 1535 issue: 4 year: 2007 ident: CIT0024 publication-title: The Annals of Statistics doi: 10.1214/009053607000000028 – volume: 102 start-page: 1416 issue: 480 year: 2007 ident: CIT0014 publication-title: Journal of the American Statistical Association doi: 10.1198/016214507000000987 – volume: 57 start-page: 289 year: 1995 ident: CIT0002 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 70 start-page: 461 issue: 3 year: 2008 ident: CIT0026 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.1467-9868.2007.00645.x – volume: 67 start-page: 555 issue: 4 year: 2005 ident: CIT0028 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.1467-9868.2005.00515.x – volume: 34 start-page: 373 issue: 1 year: 2006 ident: CIT0030 publication-title: The Annals of Statistics doi: 10.1214/009053605000000741 – volume: 14 start-page: 562 issue: 2 year: 2008 ident: CIT0015 publication-title: Bernoulli doi: 10.3150/08-BEJ121 – volume: 95 start-page: 1143 issue: 452 year: 2000 ident: CIT0033 publication-title: Journal of the American Statistical Association |
SSID | ssj0000788 |
Score | 2.193409 |
Snippet | In large-scale studies, the true effect sizes often range continuously from zero to small to large, and are observed with heteroscedastic errors. In practical... |
SourceID | proquest crossref jstor informaworld fao |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 673 |
SubjectTerms | Ambivalence Applied statistics Compound decision theory Consistent estimators data analysis Deconvoluting kernel density estimator Density estimation Deviation Estimation Estimators False important discovery rate heteroskedasticity Hypotheses Hypothesis Indifference region Large-scale simultaneous inference Mathematical procedures Null hypothesis Oracles P values Regression analysis Size Standardization Statistical methods Statistical theories Statistics Testing Theory and Methods Variance analysis |
Title | Multiple Testing of Composite Null Hypotheses in Heteroscedastic Models |
URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2012.664505 https://www.jstor.org/stable/23239602 https://www.proquest.com/docview/1035610581 https://www.proquest.com/docview/1221844993 https://www.proquest.com/docview/1803093874 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXHpBFKi6tCAjcVtllYfjOEdU0a4Q3Qu7orfIThyEVCUVSQ_w6zvjR5J2t-VxiVZO1rE8k3l55htCPkRaIewYDwTYowHLsjrIs1AEKauUUhwGazzRvVjx5YZ9vkwvR0AFU13Sq0X5e2ddyf9QFcaArlgl-w-UHSaFAfgN9IUrUBiuf0XjC58NuEasDJu-jB84JmLp-Qq8y_ny1zXWWHUm7wqUDGxj25W6kojPbDqhXXUPGKiTohPT5rc3mM47SGrOlIz0-qYx-umUoYn2fZEOpMAX0sxPF9NIA6Zs8GmkYb3V9GMSH3PRSR4HEXMQ31682q62jo-Y7TntxCW3bUyc5uVW9W4JdZcFCZPj3JiOFy84Z2mYjkpsSC0ECzEBrwy08rMYPAdsapGEq1E5Z6YV6bBSX02JcOs7XnDHWnlay_Yeoq3PYt3S5MY8Wb8gzx3Z6EfLJAfkiW5ekv2Bat0rcu65hTpuoW1NB26hyC105Bb6o6H3uIVabnlNNmef1qfLwLXRCEomwj7gkuc60pmswBJhCiVumgo8oI1kDKMsA5eba17mJeOlSsHmlHmSh1Vcg7EPRs4h2WvaRh8RWkUgsUOpNHoNIo2lSsIyFzViFKmqCmck8dtVlA5jHludXBWRh6J1m1zgJhd2k2ckGP51bTFW_vD8EVCikN9BDRabrzGCJKLrkAhYgJiSp-gNz9aWXYvk8VkPDSmHJXhOmpETT9vCffwdTJOg55GKaEbeD7dBNON5m2x0ewPPxBg_YeABPPKMMLkIImNvHnr_Mdkfv8YTstf_vNFvwRLu1TvD27dHU6gQ |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOdBLy6vq0gJG4uoliR9xjghRAnT3wq7EzbITp0JUSdVkD-2vZyaPBYooElzjRxw_xt_En78BeBUHT7JjmhvEo1ymacWzNDJcydJ7r_FhRSe6i6XO1_LjFzWxCduRVkk-dDUIRfS2mhY3_YyeKHGvEaaQwDbdM4mTudZSkYrpPZXplIIYiGj5wxinfehJKsGpyHR77g-1_LI73a1cc0PBdGIt_ma5--3oZB_89CEDC-XbfNP5eXF9Q-Pxv770AeyNYJW9GWbXQ7gT6kewS_h0kHd-DO8XIyGRrUiuoz5jTcXIxhAXLLAlvoXlVxd0zasNLftas5z4N01bhNJRHYyCsZ23T2B98m71NudjbAZeSBN1XDudhTikrsTtTXpaxkoZOvWLXYJPZYp-nA66yAqpC68QyLhMZFGZVIggcec8gJ26qcMhsDJGMxA5HwiKGpU4L6IiMxUJ3_iyjGYgpjGxxShcTvEzzm086ZuOvWSpl-zQSzPg21IXg3DHX_If4nBbd4a21a4_J6S8R3hUGGyA-XkO2K7_l1INgU-suL3Wg36-bJuAAFag05jM4HiaQHa0Gi1WIwjOKhPP4OU2Gdc7HeK4OjQbzJOQU45-qrglj-kPuE0qn_5701_A_Xy1OLWnH5afjmCXUgaK3DHsdJeb8AzBWOef98vtO0a6Hzw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxQxEJ8oJIYXUZFwiloTX3vuR7fbfSTgeahcSOAS3pp2tyVEsntx9x7gr3dmPw6ECIm-9ivdfkx_szPzG4BPobNEOya5QjzKRZp6nqWB4okorLUSCz1ZdI9mcjoX386Ss1tR_ORWSTq074giWllNl3tR-MEj7jOiFOLXpjCTMBpLKRIiMV2XxB1OQRzB7EYWp23mSerBqcsQPPeXUf54nJ56U90hMB2cFu8J7vY1mmyCGb6jc0L5OV42dpxf36F4_J8PfQHPe6jK9rqz9RKeuPIVbBA67cidt-DrUe-OyE6JrKM8Z5VnJGHIE8yxGaq3bHq1oCCv2tXsomRT8r6p6twVhsZglIrtsn4N88mX0_0p7zMz8FyooOHSyMyFLjUFPm7C0iVOEkU2v9BEWCpS1OKkk3mWC5nbBGGMyeIsKCKP-BHfzW1YK6vS7QArQhQCgbGOgKhKImPjIM-UJ9obWxTBCOJhS3Te05ZT9oxLHQ7spv0qaVol3a3SCPiq16Kj7Xik_Q7utjbnKFn1_CQi3j1Co7HCCajbR0A37Z8U36U90fHDo263x2U1BYSvMaqM0Qh2h_Oje5lR4zAxgdlEhSP4uKrG204mHFO6aoltIlLJUUuNH2ijWvO2SsWbf5_6B3h2fDDRPw5n39_CBlV0_nG7sNb8Wrp3iMQa-769bL8BiZ4d4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Testing+of+Composite+Null+Hypotheses+in+Heteroscedastic+Models&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Sun%2C+Wenguang&rft.au=McLain%2C+Alexander+C.&rft.date=2012-06-01&rft.pub=Taylor+%26+Francis+Group&rft.issn=0162-1459&rft.volume=107&rft.issue=498&rft.spage=673&rft.epage=687&rft_id=info:doi/10.1080%2F01621459.2012.664505&rft.externalDocID=23239602 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-274X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-274X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-274X&client=summon |