Multiple Testing of Composite Null Hypotheses in Heteroscedastic Models

In large-scale studies, the true effect sizes often range continuously from zero to small to large, and are observed with heteroscedastic errors. In practical situations where the failure to reject small deviations from the null is inconsequential, specifying an indifference region (or forming compo...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 107; no. 498; pp. 673 - 687
Main Authors Sun, Wenguang, McLain, Alexander C
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis Group 01.06.2012
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In large-scale studies, the true effect sizes often range continuously from zero to small to large, and are observed with heteroscedastic errors. In practical situations where the failure to reject small deviations from the null is inconsequential, specifying an indifference region (or forming composite null hypotheses) can greatly reduce the number of unimportant discoveries in multiple testing. The heteroscedasticity issue poses new challenges for multiple testing with composite nulls. In particular, the conventional framework in multiple testing, which involves rescaling or standardization, is likely to distort the scientific question. We propose the concept of a composite null distribution for heteroscedastic models and develop an optimal testing procedure that minimizes the false nondiscovery rate, subject to a constraint on the false discovery rate. The proposed approach is different from conventional methods in that the effect size, statistical significance, and multiplicity issues are addressed integrally. The external information of heteroscedastic errors is incorporated for optimal simultaneous inference. The new features and advantages of our approach are demonstrated using both simulated and real data. The numerical studies demonstrate that our new procedure enjoys superior performance with greater accuracy and better interpretability of results.
AbstractList In large-scale studies, the true effect sizes often range continuously from zero to small to large, and are observed with heteroscedastic errors. In practical situations where the failure to reject small deviations from the null is inconsequential, specifying an indifference region (or forming composite null hypotheses) can greatly reduce the number of unimportant discoveries in multiple testing. The heteroscedasticity issue poses new challenges for multiple testing with composite nulls. In particular, the conventional framework in multiple testing, which involves rescaling or standardization, is likely to distort the scientific question. We propose the concept of a composite null distribution for heteroscedastic models and develop an optimal testing procedure that minimizes the false nondiscovery rate, subject to a constraint on the false discovery rate. The proposed approach is different from conventional methods in that the effect size, statistical significance, and multiplicity issues are addressed integrally. The external information of heteroscedastic errors is incorporated for optimal simultaneous inference. The new features and advantages of our approach are demonstrated using both simulated and real data. The numerical studies demonstrate that our new procedure enjoys superior performance with greater accuracy and better interpretability of results.
In large-scale studies, the true effect sizes often range continuously from zero to small to large, and are observed with heteroscedastic errors. In practical situations where the failure to reject small deviations from the null is inconsequential, specifying an indifference region (or forming composite null hypotheses) can greatly reduce the number of unimportant discoveries in multiple testing. The heteroscedasticity issue poses new challenges for multiple testing with composite nulls. In particular, the conventional framework in multiple testing, which involves rescaling or standardization, is likely to distort the scientific question. We propose the concept of a composite null distribution for heteroscedastic models and develop an optimal testing procedure that minimizes the false nondiscovery rate, subject to a constraint on the false discovery rate. The proposed approach is different from conventional methods in that the effect size, statistical significance, and multiplicity issues are addressed integrally. The external information of heteroscedastic errors is incorporated for optimal simultaneous inference. The new features and advantages of our approach are demonstrated using both simulated and real data. The numerical studies demonstrate that our new procedure enjoys superior performance with greater accuracy and better interpretability of results. [PUBLICATION ABSTRACT]
Author Sun, Wenguang
McLain, Alexander C.
Author_xml – sequence: 1
  fullname: Sun, Wenguang
– sequence: 2
  fullname: McLain, Alexander C
BookMark eNqFkktrVDEYhoO0YFv9B4oH3LiZMfeLGymD7Qi9LNqCu5Dm5NQMmeSY5CDz781wqkg3k01Cvvf5LnlzCo5iig6AdwguEZTwM0QcI8rUEkOEl5xTBtkrcIIYEQss6I-j_86vwWkpG9iWkPIEXF5PofoxuO7elerjU5eGbpW2Yyq-uu5mCqFb78ZUf7riSudjt3bV5VSs600DbHedehfKG3A8mFDc2-f9DDxcfLtfrRdXt5ffV-dXC0slrAtuuHLICdNLKuij4kQyJgVRDBncbqlQSnLHrbKU20cmEDSKKNjjgTNOETkDn-a8Y06_ptay3vrWSwgmujQVjSQkUBEp6GEpxkhSqhRp0o8vpJs05dgG0QgSxhFkcl-bzirb5i_ZDXrMfmvyron03gj91wi9N0LPRjTsywvM-mqqT7Fm48Mh-P0Mb0pN-V9BTDBRHOIW_zrHfRxS3prfKYdeV7MLKQ_ZROuLJgcqfJgzDCZp85Qb8HDXBLx9EclIe88_uNSyqw
CODEN JSTNAL
CitedBy_id crossref_primary_10_1080_03610926_2017_1361982
crossref_primary_10_1186_s12887_016_0596_8
crossref_primary_10_1111_caje_12249
crossref_primary_10_1111_ectj_12092
crossref_primary_10_1007_s00362_014_0640_4
crossref_primary_10_1016_j_csda_2016_02_016
crossref_primary_10_1080_01621459_2020_1840992
crossref_primary_10_1016_j_jspi_2023_106119
crossref_primary_10_1146_annurev_economics_063016_104355
crossref_primary_10_1080_01621459_2018_1497499
crossref_primary_10_1080_02664763_2024_2344260
crossref_primary_10_1080_01621459_2018_1497496
crossref_primary_10_1111_biom_12586
crossref_primary_10_1080_00224065_2024_2393869
crossref_primary_10_1111_insr_12098
crossref_primary_10_1080_03610926_2020_1752725
crossref_primary_10_1080_24725854_2024_2330077
crossref_primary_10_1080_00401706_2019_1575284
crossref_primary_10_3982_ECTA19304
crossref_primary_10_1016_j_jspi_2014_04_004
crossref_primary_10_1080_00224065_2023_2210320
crossref_primary_10_1111_rssb_12304
crossref_primary_10_1002_nav_22008
crossref_primary_10_1016_j_csda_2015_12_013
Cites_doi 10.1111/j.1467-9868.2004.00430.x
10.1198/jasa.2010.tm09329
10.1198/016214507000000941
10.1214/ss/1177011945
10.1214/aos/1015362191
10.1214/009053607000000334
10.1105/tpc.104.023382
10.1214/aos/1074290335
10.1198/016214501753382129
10.1214/07-STS236
10.1198/016214508000000328
10.1016/j.spl.2006.04.016
10.1111/j.1541-0420.2006.00704.x
10.1214/10-AOS844
10.1198/016214507000000167
10.1214/08-AOAS158
10.1111/1467-9868.00347
10.1198/jasa.2009.tm08415
10.1214/aos/1176348248
10.1089/106652701300099074
10.1198/016214504000000089
10.1214/aos/1015362192
10.1007/s10463-009-0220-x
10.1214/09-AOS696
10.1214/009053607000000884
10.1080/02331889008802238
10.1111/1467-9469.00072
10.1214/aos/1176349271
10.1111/1467-9868.00346
10.1080/01621459.1999.10474186
10.1214/aos/1013699998
10.1198/016214504000001907
10.1198/016214507000000545
10.1214/009053604000000283
10.1214/009053607000000028
10.1198/016214507000000987
10.1111/j.2517-6161.1995.tb02031.x
10.1111/j.1467-9868.2007.00645.x
10.1111/j.1467-9868.2005.00515.x
10.1214/009053605000000741
10.3150/08-BEJ121
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2012
Copyright © 2012 American Statistical Association
Copyright American Statistical Association Jun 2012
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2012
– notice: Copyright © 2012 American Statistical Association
– notice: Copyright American Statistical Association Jun 2012
DBID FBQ
AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
DOI 10.1080/01621459.2012.664505
DatabaseName AGRIS
CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
International Bibliography of the Social Sciences (IBSS)

International Bibliography of the Social Sciences (IBSS)


Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 687
ExternalDocumentID 2747092111
10_1080_01621459_2012_664505
23239602
664505
US201600085380
Genre Feature
GroupedDBID -DZ
-~X
.-4
..I
.7F
.GJ
.QJ
07G
0BK
0R~
1OL
29L
2AX
30N
3R3
4.4
5GY
5RE
692
7WY
7X7
85S
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8FL
8G5
8R4
8R5
AAAVZ
AABCJ
AAENE
AAFWJ
AAHBH
AAIKQ
AAJMT
AAKBW
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABEFU
ABEHJ
ABFAN
ABFIM
ABJCF
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABRLO
ABTAI
ABUWG
ABXSQ
ABXUL
ABXYU
ABYWD
ACAGQ
ACGEE
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACUBG
ADBBV
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
ADYSH
AEISY
AENEX
AEOZL
AEPSL
AEUMN
AEUPB
AEYOC
AFFNX
AFKRA
AFQQW
AFRVT
AFSUE
AFVYC
AFXHP
AGCQS
AGDLA
AGLEN
AGLNM
AGMYJ
AGROQ
AHDZW
AHMOU
AI.
AIHAF
AIJEM
AIYEW
AKBVH
AKOOK
ALCKM
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMATQ
AMEWO
AMXXU
AQRUH
AQUVI
AVBZW
AWYRJ
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BLEHA
BPHCQ
BPLKW
BVXVI
C06
CCCUG
CCPQU
CJ0
CRFIH
CS3
D0L
DGEBU
DKSSO
DMQIW
DQDLB
DSRWC
DU5
DWIFK
DWQXO
E.L
EBS
ECEWR
EJD
E~A
E~B
F5P
FBQ
FEDTE
FJW
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GTTXZ
GUQSH
H13
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZ~
H~9
H~P
IPNFZ
IPSME
IVXBP
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
K9-
KQ8
KYCEM
L6V
LJTGL
LU7
M0C
M0R
M0T
M1P
M2O
M2P
M4Z
M7S
MS~
MVM
MW2
NA5
NHB
NUSFT
NY~
O9-
OFU
OK1
P-O
P2P
PADUT
PHGZT
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RIG
RNANH
RNS
ROSJB
RTWRZ
RWL
RXW
S-T
S0X
SA0
SJN
SNACF
TAE
TAQ
TBQAZ
TDBHL
TEJ
TFL
TFMCV
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UB9
UKHRP
UPT
UQL
UT5
UU3
VH1
VOH
WH7
WHG
WZA
YQT
YXB
YYM
YYP
ZCG
ZGI
ZGOLN
ZUP
ZXP
~S~
ABYAD
ACTWD
AELPN
GROUPED_ABI_INFORM_COMPLETE
IAO
IEA
IGG
IOF
IPO
JSODD
N95
AAGDL
AAHIA
AMPGV
AAYXX
ADXHL
AMVHM
CITATION
PHGZM
8BJ
FQK
JBE
K9.
TASJS
7S9
L.6
ID FETCH-LOGICAL-c480t-6a69e1e7ad8474b963855873951a27ad479986e6c9c46cb5710a9390d2f656413
ISSN 1537-274X
0162-1459
IngestDate Wed Jul 02 04:36:07 EDT 2025
Fri Jul 11 06:17:33 EDT 2025
Sat Aug 16 22:22:18 EDT 2025
Tue Jul 01 02:39:27 EDT 2025
Thu Apr 24 23:12:25 EDT 2025
Thu May 29 08:44:01 EDT 2025
Wed Dec 25 09:02:25 EST 2024
Thu Apr 03 09:45:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 498
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c480t-6a69e1e7ad8474b963855873951a27ad479986e6c9c46cb5710a9390d2f656413
Notes http://dx.doi.org/10.1080/01621459.2012.664505
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1035610581
PQPubID 41715
PageCount 15
ParticipantIDs proquest_journals_1035610581
proquest_miscellaneous_1221844993
jstor_primary_23239602
proquest_miscellaneous_1803093874
informaworld_taylorfrancis_310_1080_01621459_2012_664505
fao_agris_US201600085380
crossref_primary_10_1080_01621459_2012_664505
crossref_citationtrail_10_1080_01621459_2012_664505
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-06-01
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2012
Publisher Taylor & Francis Group
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis Ltd
References Carroll R. J. (CIT0010) 2004; 66
Efron B. (CIT0018) 2001; 96
Delaigle A. (CIT0015) 2008; 14
Langaas M. (CIT0028) 2005; 67
Storey J. D. (CIT0039) 2002; 64
Tukey J. W. (CIT0042) 1991; 6
Meinshausen N. (CIT0030) 2006; 34
Delaigle A. (CIT0012) 2006; 76
Delaigle A. (CIT0014) 2007; 102
Hall P. (CIT0024) 2007; 35
Sarkar S. K. (CIT0036) 2002; 30
Genovese C. (CIT0023) 2004; 32
Delaigle A. (CIT0013) 2008; 36
Benjamini Y. (CIT0005) 2005; 100
Cai T. T. (CIT0006) 2010; 38
Staudenmayer J. (CIT0037) 2008; 103
Fan J. (CIT0019) 1991; 19
Wang X.-F. (CIT0043) 2011; 39
Wu J. S. (CIT0044) 1993; 21
Cai T. T. (CIT0007) 2007; 35
Benjamini Y. (CIT0004) 2001; 29
Ruppert D. (CIT0035) 2007; 63
McIntyre J. (CIT0029) 2009; 63
Newton M. (CIT0031) 2001; 8
Chaudhuri P. (CIT0011) 1999; 94
Benjamini Y. (CIT0003) 1997; 24
Genovese C. (CIT0022) 2002; 64
Benjamini Y. (CIT0002) 1995; 57
Finner H. (CIT0021) 2002; 30
Efron B. (CIT0016) 2004; 99
Sun W. (CIT0041) 2007; 102
Jin J. (CIT0026) 2008; 70
Peña E. A. (CIT0032) 2011; 39
Stefanski L. (CIT0038) 1990; 21
Robins J. M. (CIT0033) 2000; 95
Jin J. (CIT0027) 2007; 102
Benjamini Y. (CIT0001) 2007; 102
Ferkingstad E. (CIT0020) 2008; 2
Caldo R. A. (CIT0009) 2004; 16
Hu J. (CIT0025) 2010; 105
Cai T. T. (CIT0008) 2009; 104
Rogosa D. (CIT0034) 2003
Efron B. (CIT0017) 2008; 23
Storey J. D. (CIT0040) 2003; 31
References_xml – volume: 66
  start-page: 31
  issue: 1
  year: 2004
  ident: CIT0010
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.1467-9868.2004.00430.x
– volume: 105
  start-page: 1215
  issue: 491
  year: 2010
  ident: CIT0025
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/jasa.2010.tm09329
– volume: 102
  start-page: 1272
  year: 2007
  ident: CIT0001
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214507000000941
– volume-title: Accuracy of API Index and School Base Report Elements: 2003 Academic Performance Index
  year: 2003
  ident: CIT0034
– volume: 6
  start-page: 100
  issue: 1
  year: 1991
  ident: CIT0042
  publication-title: Statistical Science
  doi: 10.1214/ss/1177011945
– volume: 30
  start-page: 220
  issue: 1
  year: 2002
  ident: CIT0021
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1015362191
– volume: 35
  start-page: 2421
  issue: 6
  year: 2007
  ident: CIT0007
  publication-title: The Annals of Statistics
  doi: 10.1214/009053607000000334
– volume: 16
  start-page: 2514
  issue: 9
  year: 2004
  ident: CIT0009
  publication-title: The Plant Cell
  doi: 10.1105/tpc.104.023382
– volume: 31
  start-page: 2013
  year: 2003
  ident: CIT0040
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1074290335
– volume: 96
  start-page: 1151
  year: 2001
  ident: CIT0018
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214501753382129
– volume: 23
  start-page: 1
  issue: 1
  year: 2008
  ident: CIT0017
  publication-title: Statistical Science
  doi: 10.1214/07-STS236
– volume: 103
  start-page: 726
  issue: 482
  year: 2008
  ident: CIT0037
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214508000000328
– volume: 76
  start-page: 1594
  issue: 15
  year: 2006
  ident: CIT0012
  publication-title: Statistics and Probability Letters
  doi: 10.1016/j.spl.2006.04.016
– volume: 63
  start-page: 483
  issue: 2
  year: 2007
  ident: CIT0035
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2006.00704.x
– volume: 39
  start-page: 556
  issue: 1
  year: 2011
  ident: CIT0032
  publication-title: The Annals of Statistics
  doi: 10.1214/10-AOS844
– volume: 102
  start-page: 495
  issue: 478
  year: 2007
  ident: CIT0027
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214507000000167
– volume: 39
  start-page: 1
  issue: 10
  year: 2011
  ident: CIT0043
  publication-title: Journal of Statistical Software
– volume: 2
  start-page: 714
  issue: 2
  year: 2008
  ident: CIT0020
  publication-title: The Annals of Applied Statistics
  doi: 10.1214/08-AOAS158
– volume: 64
  start-page: 499
  year: 2002
  ident: CIT0022
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/1467-9868.00347
– volume: 104
  start-page: 1467
  issue: 488
  year: 2009
  ident: CIT0008
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/jasa.2009.tm08415
– volume: 19
  start-page: 1257
  issue: 3
  year: 1991
  ident: CIT0019
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176348248
– volume: 8
  start-page: 37
  year: 2001
  ident: CIT0031
  publication-title: Journal of Computational Biology
  doi: 10.1089/106652701300099074
– volume: 99
  start-page: 96
  issue: 465
  year: 2004
  ident: CIT0016
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214504000000089
– volume: 30
  start-page: 239
  year: 2002
  ident: CIT0036
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1015362192
– volume: 63
  start-page: 81
  issue: 1
  year: 2009
  ident: CIT0029
  publication-title: The Annals of the Institute of Statistical Mathematics
  doi: 10.1007/s10463-009-0220-x
– volume: 38
  start-page: 100
  issue: 1
  year: 2010
  ident: CIT0006
  publication-title: The Annals of Statistics
  doi: 10.1214/09-AOS696
– volume: 36
  start-page: 665
  issue: 2
  year: 2008
  ident: CIT0013
  publication-title: The Annals of Statistics
  doi: 10.1214/009053607000000884
– volume: 21
  start-page: 169
  issue: 2
  year: 1990
  ident: CIT0038
  publication-title: Statistics
  doi: 10.1080/02331889008802238
– volume: 24
  start-page: 407
  year: 1997
  ident: CIT0003
  publication-title: Scandinavian Journal of Statistics
  doi: 10.1111/1467-9469.00072
– volume: 21
  start-page: 1545
  issue: 3
  year: 1993
  ident: CIT0044
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176349271
– volume: 64
  start-page: 479
  year: 2002
  ident: CIT0039
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/1467-9868.00346
– volume: 94
  start-page: 807
  issue: 447
  year: 1999
  ident: CIT0011
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1999.10474186
– volume: 29
  start-page: 1165
  issue: 4
  year: 2001
  ident: CIT0004
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1013699998
– volume: 100
  start-page: 71
  issue: 469
  year: 2005
  ident: CIT0005
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214504000001907
– volume: 102
  start-page: 901
  issue: 479
  year: 2007
  ident: CIT0041
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214507000000545
– volume: 32
  start-page: 1035
  issue: 3
  year: 2004
  ident: CIT0023
  publication-title: The Annals of Statistics
  doi: 10.1214/009053604000000283
– volume: 35
  start-page: 1535
  issue: 4
  year: 2007
  ident: CIT0024
  publication-title: The Annals of Statistics
  doi: 10.1214/009053607000000028
– volume: 102
  start-page: 1416
  issue: 480
  year: 2007
  ident: CIT0014
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214507000000987
– volume: 57
  start-page: 289
  year: 1995
  ident: CIT0002
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 70
  start-page: 461
  issue: 3
  year: 2008
  ident: CIT0026
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.1467-9868.2007.00645.x
– volume: 67
  start-page: 555
  issue: 4
  year: 2005
  ident: CIT0028
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.1467-9868.2005.00515.x
– volume: 34
  start-page: 373
  issue: 1
  year: 2006
  ident: CIT0030
  publication-title: The Annals of Statistics
  doi: 10.1214/009053605000000741
– volume: 14
  start-page: 562
  issue: 2
  year: 2008
  ident: CIT0015
  publication-title: Bernoulli
  doi: 10.3150/08-BEJ121
– volume: 95
  start-page: 1143
  issue: 452
  year: 2000
  ident: CIT0033
  publication-title: Journal of the American Statistical Association
SSID ssj0000788
Score 2.193409
Snippet In large-scale studies, the true effect sizes often range continuously from zero to small to large, and are observed with heteroscedastic errors. In practical...
SourceID proquest
crossref
jstor
informaworld
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 673
SubjectTerms Ambivalence
Applied statistics
Compound decision theory
Consistent estimators
data analysis
Deconvoluting kernel density estimator
Density estimation
Deviation
Estimation
Estimators
False important discovery rate
heteroskedasticity
Hypotheses
Hypothesis
Indifference region
Large-scale simultaneous inference
Mathematical procedures
Null hypothesis
Oracles
P values
Regression analysis
Size
Standardization
Statistical methods
Statistical theories
Statistics
Testing
Theory and Methods
Variance analysis
Title Multiple Testing of Composite Null Hypotheses in Heteroscedastic Models
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2012.664505
https://www.jstor.org/stable/23239602
https://www.proquest.com/docview/1035610581
https://www.proquest.com/docview/1221844993
https://www.proquest.com/docview/1803093874
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXHpBFKi6tCAjcVtllYfjOEdU0a4Q3Qu7orfIThyEVCUVSQ_w6zvjR5J2t-VxiVZO1rE8k3l55htCPkRaIewYDwTYowHLsjrIs1AEKauUUhwGazzRvVjx5YZ9vkwvR0AFU13Sq0X5e2ddyf9QFcaArlgl-w-UHSaFAfgN9IUrUBiuf0XjC58NuEasDJu-jB84JmLp-Qq8y_ny1zXWWHUm7wqUDGxj25W6kojPbDqhXXUPGKiTohPT5rc3mM47SGrOlIz0-qYx-umUoYn2fZEOpMAX0sxPF9NIA6Zs8GmkYb3V9GMSH3PRSR4HEXMQ31682q62jo-Y7TntxCW3bUyc5uVW9W4JdZcFCZPj3JiOFy84Z2mYjkpsSC0ECzEBrwy08rMYPAdsapGEq1E5Z6YV6bBSX02JcOs7XnDHWnlay_Yeoq3PYt3S5MY8Wb8gzx3Z6EfLJAfkiW5ekv2Bat0rcu65hTpuoW1NB26hyC105Bb6o6H3uIVabnlNNmef1qfLwLXRCEomwj7gkuc60pmswBJhCiVumgo8oI1kDKMsA5eba17mJeOlSsHmlHmSh1Vcg7EPRs4h2WvaRh8RWkUgsUOpNHoNIo2lSsIyFzViFKmqCmck8dtVlA5jHludXBWRh6J1m1zgJhd2k2ckGP51bTFW_vD8EVCikN9BDRabrzGCJKLrkAhYgJiSp-gNz9aWXYvk8VkPDSmHJXhOmpETT9vCffwdTJOg55GKaEbeD7dBNON5m2x0ewPPxBg_YeABPPKMMLkIImNvHnr_Mdkfv8YTstf_vNFvwRLu1TvD27dHU6gQ
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOdBLy6vq0gJG4uoliR9xjghRAnT3wq7EzbITp0JUSdVkD-2vZyaPBYooElzjRxw_xt_En78BeBUHT7JjmhvEo1ymacWzNDJcydJ7r_FhRSe6i6XO1_LjFzWxCduRVkk-dDUIRfS2mhY3_YyeKHGvEaaQwDbdM4mTudZSkYrpPZXplIIYiGj5wxinfehJKsGpyHR77g-1_LI73a1cc0PBdGIt_ma5--3oZB_89CEDC-XbfNP5eXF9Q-Pxv770AeyNYJW9GWbXQ7gT6kewS_h0kHd-DO8XIyGRrUiuoz5jTcXIxhAXLLAlvoXlVxd0zasNLftas5z4N01bhNJRHYyCsZ23T2B98m71NudjbAZeSBN1XDudhTikrsTtTXpaxkoZOvWLXYJPZYp-nA66yAqpC68QyLhMZFGZVIggcec8gJ26qcMhsDJGMxA5HwiKGpU4L6IiMxUJ3_iyjGYgpjGxxShcTvEzzm086ZuOvWSpl-zQSzPg21IXg3DHX_If4nBbd4a21a4_J6S8R3hUGGyA-XkO2K7_l1INgU-suL3Wg36-bJuAAFag05jM4HiaQHa0Gi1WIwjOKhPP4OU2Gdc7HeK4OjQbzJOQU45-qrglj-kPuE0qn_5701_A_Xy1OLWnH5afjmCXUgaK3DHsdJeb8AzBWOef98vtO0a6Hzw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxQxEJ8oJIYXUZFwiloTX3vuR7fbfSTgeahcSOAS3pp2tyVEsntx9x7gr3dmPw6ECIm-9ivdfkx_szPzG4BPobNEOya5QjzKRZp6nqWB4okorLUSCz1ZdI9mcjoX386Ss1tR_ORWSTq074giWllNl3tR-MEj7jOiFOLXpjCTMBpLKRIiMV2XxB1OQRzB7EYWp23mSerBqcsQPPeXUf54nJ56U90hMB2cFu8J7vY1mmyCGb6jc0L5OV42dpxf36F4_J8PfQHPe6jK9rqz9RKeuPIVbBA67cidt-DrUe-OyE6JrKM8Z5VnJGHIE8yxGaq3bHq1oCCv2tXsomRT8r6p6twVhsZglIrtsn4N88mX0_0p7zMz8FyooOHSyMyFLjUFPm7C0iVOEkU2v9BEWCpS1OKkk3mWC5nbBGGMyeIsKCKP-BHfzW1YK6vS7QArQhQCgbGOgKhKImPjIM-UJ9obWxTBCOJhS3Te05ZT9oxLHQ7spv0qaVol3a3SCPiq16Kj7Xik_Q7utjbnKFn1_CQi3j1Co7HCCajbR0A37Z8U36U90fHDo263x2U1BYSvMaqM0Qh2h_Oje5lR4zAxgdlEhSP4uKrG204mHFO6aoltIlLJUUuNH2ijWvO2SsWbf5_6B3h2fDDRPw5n39_CBlV0_nG7sNb8Wrp3iMQa-769bL8BiZ4d4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Testing+of+Composite+Null+Hypotheses+in+Heteroscedastic+Models&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Sun%2C+Wenguang&rft.au=McLain%2C+Alexander+C.&rft.date=2012-06-01&rft.pub=Taylor+%26+Francis+Group&rft.issn=0162-1459&rft.volume=107&rft.issue=498&rft.spage=673&rft.epage=687&rft_id=info:doi/10.1080%2F01621459.2012.664505&rft.externalDocID=23239602
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-274X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-274X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-274X&client=summon