Effect of NaCl treatments on glucosinolate metabolism in broccoli sprouts

To understand the regulation mechanism of NaCI on glucosinolate metabolism in broccoli sprouts, the germination rate, fresh weight, contents of glucosinolates and sulforaphane, as well as myrosinase activity of broccoli sprouts germinated under 0, 20, 40, 60, 80, and 100 mmol/L of NaCI were investig...

Full description

Saved in:
Bibliographic Details
Published inJournal of Zhejiang University. B. Science Vol. 14; no. 2; pp. 124 - 131
Main Authors Guo, Rong-fang, Yuan, Gao-feng, Wang, Qiao-mei
Format Journal Article
LanguageEnglish
Published Heidelberg SP Zhejiang University Press 01.02.2013
Springer Nature B.V
Zhejiang University Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To understand the regulation mechanism of NaCI on glucosinolate metabolism in broccoli sprouts, the germination rate, fresh weight, contents of glucosinolates and sulforaphane, as well as myrosinase activity of broccoli sprouts germinated under 0, 20, 40, 60, 80, and 100 mmol/L of NaCI were investigated in our experiment. The results showed that glucoerucin, glucobrassicin, and 4-hydroxy glucobrassicin in 7-d-old broccoli sprouts were significantly enhanced and the activity of myrosinase was inhibited by 100 mmol/L of NaCI. However, the total glucosinolate content in 7-d-old broccoli sprouts was markedly decreased although the fresh weight was significantly increased after treatment with NaCI at relatively low concentrations (20, 40, and 60 mmol/L). NaCI treatment at the concentration of 60 mmol/L for 5 d maintained higher biomass and comparatively higher content of glucosinolates in sprouts of broccoli with decreased myrosinase activity. A relatively high level of NaCI treatment (100 mmol/L) significantly increased the content of sulforaphane in 7-d-old broccoli sprouts compared with the control. These results indicate that broccoli sprouts grown under a suitable concentration of NaCI could be desirable for human nutrition.
Bibliography:To understand the regulation mechanism of NaCI on glucosinolate metabolism in broccoli sprouts, the germination rate, fresh weight, contents of glucosinolates and sulforaphane, as well as myrosinase activity of broccoli sprouts germinated under 0, 20, 40, 60, 80, and 100 mmol/L of NaCI were investigated in our experiment. The results showed that glucoerucin, glucobrassicin, and 4-hydroxy glucobrassicin in 7-d-old broccoli sprouts were significantly enhanced and the activity of myrosinase was inhibited by 100 mmol/L of NaCI. However, the total glucosinolate content in 7-d-old broccoli sprouts was markedly decreased although the fresh weight was significantly increased after treatment with NaCI at relatively low concentrations (20, 40, and 60 mmol/L). NaCI treatment at the concentration of 60 mmol/L for 5 d maintained higher biomass and comparatively higher content of glucosinolates in sprouts of broccoli with decreased myrosinase activity. A relatively high level of NaCI treatment (100 mmol/L) significantly increased the content of sulforaphane in 7-d-old broccoli sprouts compared with the control. These results indicate that broccoli sprouts grown under a suitable concentration of NaCI could be desirable for human nutrition.
Glucosinolates, Brassica oleracea, Sulforaphane, Myrosinase, NaCI
33-1356/Q
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Corresponding Author
ISSN:1673-1581
1862-1783
1862-1783
DOI:10.1631/jzus.B1200096