Chaotic Time Series Prediction Based on a Novel Robust Echo State Network
In this paper, a robust recurrent neural network is presented in a Bayesian framework based on echo state mechanisms. Since the new model is capable of handling outliers in the training data set, it is termed as a robust echo state network (RESN). The RESN inherits the basic idea of ESN learning in...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 23; no. 5; pp. 787 - 799 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.05.2012
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, a robust recurrent neural network is presented in a Bayesian framework based on echo state mechanisms. Since the new model is capable of handling outliers in the training data set, it is termed as a robust echo state network (RESN). The RESN inherits the basic idea of ESN learning in a Bayesian framework, but replaces the commonly used Gaussian distribution with a Laplace one, which is more robust to outliers, as the likelihood function of the model output. Moreover, the training of the RESN is facilitated by employing a bound optimization algorithm, based on which, a proper surrogate function is derived and the Laplace likelihood function is approximated by a Gaussian one, while remaining robust to outliers. It leads to an efficient method for estimating model parameters, which can be solved by using a Bayesian evidence procedure in a fully autonomous way. Experimental results show that the proposed method is robust in the presence of outliers and is superior to existing methods. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
ISSN: | 2162-237X 2162-2388 2162-2388 |
DOI: | 10.1109/TNNLS.2012.2188414 |