The drainage of a foam lamella

We present a mathematical model for the drainage of a surfactant-stabilized foam lamella, including capillary, Marangoni and viscous effects and allowing for diffusion, advection and adsorption of the surfactant molecules. We use the slender geometry of a lamella to formulate the model in the thin-f...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 458; pp. 379 - 406
Main Authors BREWARD, C. J. W., HOWELL, P. D.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 10.05.2002
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present a mathematical model for the drainage of a surfactant-stabilized foam lamella, including capillary, Marangoni and viscous effects and allowing for diffusion, advection and adsorption of the surfactant molecules. We use the slender geometry of a lamella to formulate the model in the thin-film limit and perform an asymptotic decomposition of the liquid domain into a capillary-static Plateau border, a time-dependent thin film and a transition region between the two. By solving a quasi-steady boundary-value problem in the transition region, we obtain the flux of liquid from the lamella into the Plateau border and thus are able to determine the rate at which the lamella drains. Our method is illustrated initially in the surfactant-free case. Numerical results are presented for three particular parameter regimes of interest when surfactant is present. Both monotonic profiles and those exhibiting a dimple near the Plateau border are found, the latter having been previously observed in experiments. The velocity field may be uniform across the lamella or of parabolic Poiseuille type, with fluid either driven out along the centreline and back along the free surfaces or vice versa. We find that diffusion may be negligible for a typical real surfactant, although this does not lead to a reduction in order because of the inherently diffusive nature of the fluid–surfactant interaction. Finally, we obtain the surprising result that the flux of liquid from the lamella into the Plateau border increases as the lamella thins, approaching infinity at a finite lamella thickness.
Bibliography:PII:S0022112002007930
istex:53405289B9389FF79F0C9BD00A28922BC48552E3
ark:/67375/6GQ-Z0VBL5CF-V
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0022-1120
1469-7645
DOI:10.1017/S0022112002007930