Identification of differentially expressed ER stress-related genes and their association with pulmonary arterial hypertension

Pulmonary arterial hypertension (PAH) is a complex and progressive illness that has a multifaceted origin, significant fatality rates, and profound effects on health. The pathogenesis of PAH is poorly defined due to the insufficient understanding of the combined impact of endoplasmic reticulum (ER)...

Full description

Saved in:
Bibliographic Details
Published inRespiratory research Vol. 25; no. 1; pp. 220 - 14
Main Authors Yang, Qi, Lai, Banghui, Xie, Hao, Deng, Mingbin, Li, Jun, Yang, Yan, Wan, Juyi, Liao, Bin, Liu, Feng
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 24.05.2024
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pulmonary arterial hypertension (PAH) is a complex and progressive illness that has a multifaceted origin, significant fatality rates, and profound effects on health. The pathogenesis of PAH is poorly defined due to the insufficient understanding of the combined impact of endoplasmic reticulum (ER) stress and immune infiltration, both of which play vital roles in PAH development. This study aims to identify potential ER stress-related biomarkers in PAH and investigate their involvement in immune infiltration. The GEO database was used to download gene expression profiles. Genes associated with ER stress were obtained from the MSigDB database. Weighted gene co-expression network analysis (WGCNA), GO, KEGG, and protein-protein interaction (PPI) were utilized to conduct screening of hub genes and explore potential molecular mechanisms. Furthermore, the investigation also delved into the presence of immune cells in PAH tissues and the correlation between hub genes and the immune system. Finally, we validated the diagnostic value and expression levels of the hub genes in PAH using subject-workup characterization curves and real-time quantitative PCR. In the PAH and control groups, a total of 31 genes related to ER stress were found to be differentially expressed. The enrichment analysis revealed that these genes were primarily enriched in reacting to stress in the endoplasmic reticulum, dealing with unfolded proteins, transporting proteins, and processing proteins within the endoplasmic reticulum. EIF2S1, NPLOC4, SEC61B, SYVN1, and DERL1 were identified as the top 5 hub genes in the PPI network. Immune infiltration analysis revealed that these hub genes were closely related to immune cells. The receiver operating characteristic (ROC) curves revealed that the hub genes exhibited excellent diagnostic efficacy for PAH. The levels of SEC61B, NPLOC4, and EIF2S1 expression were in agreement with the findings of bioinformatics analysis in the PAH group. Potential biomarkers that could be utilized are SEC61B, NPLOC4, and EIF2S1, as identified in this study. The infiltration of immune cells was crucial to the development and advancement of PAH. This study provided new potential therapeutic targets for PAH.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1465-993X
1465-9921
1465-993X
DOI:10.1186/s12931-024-02849-4