Fabrication and characterization of isotropic magnetorheological elastomers

This paper presents a new method to fabricate isotropic magnetorheological (MR) elastomers under natural conditions. In the absence of a magnetic field, a variety of MR elastomer samples made of carbonyl iron particles, silicon rubber and silicone oil, were fabricated. Their dynamic viscoelastic pro...

Full description

Saved in:
Bibliographic Details
Published inPolymer testing Vol. 24; no. 5; pp. 669 - 676
Main Authors Gong, X.L., Zhang, X.Z., Zhang, P.Q.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.08.2005
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a new method to fabricate isotropic magnetorheological (MR) elastomers under natural conditions. In the absence of a magnetic field, a variety of MR elastomer samples made of carbonyl iron particles, silicon rubber and silicone oil, were fabricated. Their dynamic viscoelastic properties were characterized by a measurement system developed by our group. Also, the microstructure of the samples was observed by a scanning electron microscope. The effects of iron particles and additives on the MR effect and the relationship between microstructure and mechanical properties were investigated. Furthermore, a simple self-assembled microstructure was proposed to explain the inherent magnetoviscoelasticity of MR elastomers prepared in the absence of a magnetic field. The analytical results of the model are in agreement with experimental data. The study is also expected to provide a good guide for designing and preparing new MR elastomers.
ISSN:0142-9418
1873-2348
DOI:10.1016/j.polymertesting.2005.03.015