Laser‐Induced Keyhole Defect Dynamics during Metal Additive Manufacturing

Laser powder bed fusion (LPBF) metal additive manufacturing provides distinct advantages for aerospace and biomedical applications. However, widespread industrial adoption is limited by a lack of confidence in part properties driven by an incomplete understanding of how unique process parameters rel...

Full description

Saved in:
Bibliographic Details
Published inAdvanced engineering materials Vol. 21; no. 10
Main Authors Kiss, Andrew M., Fong, Anthony Y., Calta, Nicholas P., Thampy, Vivek, Martin, Aiden A., Depond, Philip J., Wang, Jenny, Matthews, Manyalibo J., Ott, Ryan T., Tassone, Christopher J., Stone, Kevin H., Kramer, Matthew J., van Buuren, Anthony, Toney, Michael F., Nelson Weker, Johanna
Format Journal Article
LanguageEnglish
Published Germany Wiley Blackwell (John Wiley & Sons) 01.10.2019
Subjects
Online AccessGet full text
ISSN1438-1656
1527-2648
DOI10.1002/adem.201900455

Cover

Loading…
Abstract Laser powder bed fusion (LPBF) metal additive manufacturing provides distinct advantages for aerospace and biomedical applications. However, widespread industrial adoption is limited by a lack of confidence in part properties driven by an incomplete understanding of how unique process parameters relate to defect formation and ultimately mechanical properties. To address that gap, high‐speed X‐ray imaging is used to probe subsurface melt pool dynamics and void‐formation mechanisms inaccessible to other monitoring approaches. This technique directly observes the depth and dynamic behavior of the vapor depression, also known as the keyhole depression, which is formed by recoil pressure from laser‐driven metal vaporization. Also, vapor bubble formation and motion due to melt pool currents is observed, including instances of bubbles splitting before solidification into clusters of smaller voids while the material rapidly cools. Other phenomena include bubbles being formed from and then recaptured by the vapor depression, leaving no voids in the final part. Such events complicate attempts to identify defect formation using surface‐sensitive process‐monitoring tools. Finally, once the void defects form, they cannot be repaired by simple laser scans, without introducing new defects, thus emphasizing the importance of understanding processing parameters to develop robust defect‐mitigation strategies based on experimentally validated models. Void formation during laser powder bed fusion additive manufacturing is investigated using high‐speed X‐ray imaging. This nondestructive technique allows for imaging inside the component during the build process to visualize the highly dynamic vapor depression and capture void formation. Vapor depression depth and number of voids generated is measured to experimentally validate the theoretical keyholing threshold.
AbstractList Laser powder bed fusion (LPBF) metal additive manufacturing provides distinct advantages for aerospace and biomedical applications. However, widespread industrial adoption is limited by a lack of confidence in part properties driven by an incomplete understanding of how unique process parameters relate to defect formation and ultimately mechanical properties. To address that gap, high‐speed X‐ray imaging is used to probe subsurface melt pool dynamics and void‐formation mechanisms inaccessible to other monitoring approaches. This technique directly observes the depth and dynamic behavior of the vapor depression, also known as the keyhole depression, which is formed by recoil pressure from laser‐driven metal vaporization. Also, vapor bubble formation and motion due to melt pool currents is observed, including instances of bubbles splitting before solidification into clusters of smaller voids while the material rapidly cools. Other phenomena include bubbles being formed from and then recaptured by the vapor depression, leaving no voids in the final part. Such events complicate attempts to identify defect formation using surface‐sensitive process‐monitoring tools. Finally, once the void defects form, they cannot be repaired by simple laser scans, without introducing new defects, thus emphasizing the importance of understanding processing parameters to develop robust defect‐mitigation strategies based on experimentally validated models. Void formation during laser powder bed fusion additive manufacturing is investigated using high‐speed X‐ray imaging. This nondestructive technique allows for imaging inside the component during the build process to visualize the highly dynamic vapor depression and capture void formation. Vapor depression depth and number of voids generated is measured to experimentally validate the theoretical keyholing threshold.
Author Toney, Michael F.
Martin, Aiden A.
Thampy, Vivek
Fong, Anthony Y.
Kiss, Andrew M.
Ott, Ryan T.
Matthews, Manyalibo J.
van Buuren, Anthony
Depond, Philip J.
Tassone, Christopher J.
Stone, Kevin H.
Calta, Nicholas P.
Nelson Weker, Johanna
Wang, Jenny
Kramer, Matthew J.
Author_xml – sequence: 1
  givenname: Andrew M.
  orcidid: 0000-0002-8515-5508
  surname: Kiss
  fullname: Kiss, Andrew M.
  organization: SLAC National Accelerator Laboratory
– sequence: 2
  givenname: Anthony Y.
  surname: Fong
  fullname: Fong, Anthony Y.
  organization: SLAC National Accelerator Laboratory
– sequence: 3
  givenname: Nicholas P.
  surname: Calta
  fullname: Calta, Nicholas P.
  organization: Lawrence Livermore National Laboratory
– sequence: 4
  givenname: Vivek
  surname: Thampy
  fullname: Thampy, Vivek
  organization: SLAC National Accelerator Laboratory
– sequence: 5
  givenname: Aiden A.
  surname: Martin
  fullname: Martin, Aiden A.
  organization: Lawrence Livermore National Laboratory
– sequence: 6
  givenname: Philip J.
  surname: Depond
  fullname: Depond, Philip J.
  organization: Lawrence Livermore National Laboratory
– sequence: 7
  givenname: Jenny
  surname: Wang
  fullname: Wang, Jenny
  organization: Lawrence Livermore National Laboratory
– sequence: 8
  givenname: Manyalibo J.
  surname: Matthews
  fullname: Matthews, Manyalibo J.
  organization: Lawrence Livermore National Laboratory
– sequence: 9
  givenname: Ryan T.
  surname: Ott
  fullname: Ott, Ryan T.
  organization: Iowa State University
– sequence: 10
  givenname: Christopher J.
  surname: Tassone
  fullname: Tassone, Christopher J.
  organization: SLAC National Accelerator Laboratory
– sequence: 11
  givenname: Kevin H.
  surname: Stone
  fullname: Stone, Kevin H.
  organization: SLAC National Accelerator Laboratory
– sequence: 12
  givenname: Matthew J.
  surname: Kramer
  fullname: Kramer, Matthew J.
  organization: Iowa State University
– sequence: 13
  givenname: Anthony
  surname: van Buuren
  fullname: van Buuren, Anthony
  organization: Lawrence Livermore National Laboratory
– sequence: 14
  givenname: Michael F.
  surname: Toney
  fullname: Toney, Michael F.
  organization: SLAC National Accelerator Laboratory
– sequence: 15
  givenname: Johanna
  surname: Nelson Weker
  fullname: Nelson Weker, Johanna
  email: jlnelson@slac.stanford.edu
  organization: SLAC National Accelerator Laboratory
BackLink https://www.osti.gov/biblio/1557328$$D View this record in Osti.gov
BookMark eNqFkM9KAzEQxoNUsFavnhfvW_N3kz2Wtmppixc9h5jM2sg2K5tU6c1H8Bl9ErdWFATxMjMw3--b4TtGvdAEQOiM4CHBmF4YB-shxaTEmAtxgPpEUJnTgqteN3OmclKI4ggdx_iIMSGYsD6aL0yE9v31bRbcxoLL5rBdNTVkE6jApmyyDWbtbczcpvXhIVtCMnU2cs4n_wzZ0oRNZWz6XJ6gw8rUEU6_-gDdXU5vx9f54uZqNh4tcssVFrlQqsKlkI4Ds1IVxkgrKTfEFEWpFJWmFKqSnHYVs_uSUissKxiW4ApSARug871vE5PX0foEdmWbELqHNRFCMqo60XAvsm0TYwuVfmr92rRbTbDe5aV3eenvvDqA_wI6Y5N8E1JrfP03Vu6xF1_D9p8jejSZLn_YD-krgcI
CitedBy_id crossref_primary_10_1016_j_addma_2021_101875
crossref_primary_10_1080_17452759_2025_2474532
crossref_primary_10_1088_1402_4896_acedd6
crossref_primary_10_1557_mrs_2020_275
crossref_primary_10_1038_s41598_022_07261_w
crossref_primary_10_1016_j_addma_2020_101336
crossref_primary_10_1016_j_addma_2020_101559
crossref_primary_10_1016_j_matdes_2020_108987
crossref_primary_10_3390_met14090961
crossref_primary_10_1002_advs_202203546
crossref_primary_10_1038_s41467_022_34122_x
crossref_primary_10_1063_5_0080724
crossref_primary_10_1115_1_4062852
crossref_primary_10_1016_j_jnucmat_2022_153841
crossref_primary_10_1186_s40323_024_00276_0
crossref_primary_10_1016_j_cirpj_2021_06_015
crossref_primary_10_1016_j_jmapro_2022_06_031
crossref_primary_10_1007_s00170_022_10263_7
crossref_primary_10_1038_s41524_024_01198_6
crossref_primary_10_1016_j_addma_2021_102333
crossref_primary_10_1016_j_jmapro_2025_03_049
crossref_primary_10_1103_RevModPhys_94_045002
crossref_primary_10_1007_s12540_022_01263_z
crossref_primary_10_1007_s00170_024_14156_9
crossref_primary_10_1016_j_jmapro_2023_03_065
crossref_primary_10_1016_j_cossms_2021_100974
crossref_primary_10_1038_s41467_023_43371_3
crossref_primary_10_1121_10_0006386
crossref_primary_10_2497_jjspm_16B_T6_34
crossref_primary_10_1016_j_addma_2020_101667
crossref_primary_10_3390_ma16010324
crossref_primary_10_1039_D4JA00159A
crossref_primary_10_3390_micro3030044
crossref_primary_10_1038_s43246_024_00699_7
crossref_primary_10_1038_s41598_022_13940_5
crossref_primary_10_3390_ma14092374
crossref_primary_10_1063_1_5143766
crossref_primary_10_1007_s11661_020_06009_3
crossref_primary_10_1016_j_matdes_2022_110790
crossref_primary_10_1016_j_matdes_2023_111681
crossref_primary_10_1016_j_msea_2020_140002
crossref_primary_10_3390_jmmp6060141
crossref_primary_10_1016_j_addma_2020_101271
crossref_primary_10_1108_RPJ_05_2022_0145
crossref_primary_10_2207_jjws_93_440
crossref_primary_10_1016_j_cossms_2022_101024
crossref_primary_10_1140_epjb_s10051_021_00068_0
Cites_doi 10.1108/13552541111156450
10.1038/s41598-017-04237-z
10.1007/s11837-016-2234-1
10.1016/j.scriptamat.2018.05.033
10.1016/j.addma.2017.06.007
10.1016/j.addma.2014.12.001
10.1016/j.actamat.2018.03.036
10.1063/1.4937809
10.1016/j.matdes.2018.06.049
10.1016/j.addma.2014.08.001
10.1007/978-1-84996-432-6_63
10.1016/j.matdes.2016.01.099
10.1038/s41598-016-0028-x
10.1063/1.5017236
10.1115/1.4035420
10.1126/science.aav4687
10.1007/s11665-014-0958-z
10.1016/j.jmatprotec.2014.06.005
10.1016/j.phpro.2010.08.080
10.1146/annurev-matsci-070115-032024
10.1107/S0909049502020289
10.1063/1.4940605
10.1016/j.actamat.2016.02.014
10.1016/j.addma.2018.05.032
10.1016/j.addma.2017.11.012
10.1016/j.matdes.2018.12.006
10.1016/j.matdes.2015.07.147
10.1108/13552540810907974
10.1063/1.4914605
10.1038/s41467-018-03734-7
10.1016/j.msea.2015.10.068
10.1016/j.cirp.2013.03.032
10.1016/j.actamat.2016.05.017
10.1088/0022-3727/44/44/445401
10.1088/0022-3727/40/18/037
10.1016/j.actamat.2015.06.004
10.1533/9781845690144
10.1179/1743284714Y.0000000728
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
OTOTI
DOI 10.1002/adem.201900455
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1527-2648
EndPage n/a
ExternalDocumentID 1557328
10_1002_adem_201900455
ADEM201900455
Genre article
GrantInformation_xml – fundername: Basic Energy Sciences
  funderid: DE-AC02-07CH11358; DE-AC02-76SF00515; DE-SC0012704
– fundername: Advanced Manufacturing Office
– fundername: National Nuclear Security Administration
  funderid: DE-AC52-07NA27344
GroupedDBID -~X
05W
0R~
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
50Y
52U
5GY
5VS
66C
6P2
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F5P
FEDTE
G-S
GNP
GODZA
HGLYW
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TUS
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XPP
XV2
ZZTAW
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
6XO
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c4805-588f0957d4e3c786aa7c724a1a6698827a958f74258f03b922c5c36307ed61fe3
IEDL.DBID DR2
ISSN 1438-1656
IngestDate Fri May 19 02:14:03 EDT 2023
Thu Apr 24 22:54:11 EDT 2025
Tue Jul 01 02:51:04 EDT 2025
Wed Jan 22 16:40:46 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4805-588f0957d4e3c786aa7c724a1a6698827a958f74258f03b922c5c36307ed61fe3
Notes USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
USDOE National Nuclear Security Administration (NNSA)
AC02-07CH11358; AC02-76SF00515; SC0012704; AC52-07NA27344
ORCID 0000-0002-8515-5508
0000000285155508
OpenAccessLink https://www.osti.gov/biblio/1557328
PageCount 7
ParticipantIDs osti_scitechconnect_1557328
crossref_primary_10_1002_adem_201900455
crossref_citationtrail_10_1002_adem_201900455
wiley_primary_10_1002_adem_201900455_ADEM201900455
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2019
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Advanced engineering materials
PublicationYear 2019
Publisher Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Blackwell (John Wiley & Sons)
References 2015; 2
2017; 7
2015; 5
2015; 1516
2017; 69
2016; 108
2016; 1706
2010
2015; 31
2013; 62
2015; 96
2008; 14
2016; 95
2002
2018; 89
2011; 17
2018; 22
2018; 21
2014; 23
2014; 214
2003; 10
2017; 139
2019; 164
2015; 1650
2019; 363
2014; 1
2018; 9
2018; 154
2018; 151
2017; 16
2015; 86
2018; 156
2016; 651
2011; 44
2015
2014
2007; 40
2016; 114
2010; 5
2016; 46
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
Bewlay B. P. (e_1_2_7_11_1) 2015; 1516
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
F42.19 (e_1_2_7_6_1) 2015
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Wohlers T. (e_1_2_7_3_1) 2014
References_xml – volume: 5
  start-page: 523
  year: 2010
  publication-title: Phys. Procedia
– volume: 44
  start-page: 445401
  year: 2011
  publication-title: J. Phys. D: Appl. Phys.
– volume: 95
  start-page: 431
  year: 2016
  publication-title: Mater. Des.
– volume: 22
  start-page: 548
  year: 2018
  publication-title: Addit. Manuf.
– volume: 651
  start-page: 198
  year: 2016
  publication-title: Mater. Sci. Eng. A
– volume: 62
  start-page: 223
  year: 2013
  publication-title: CIRP Ann. Manuf. Technol.
– volume: 1706
  start-page: 130002
  year: 2016
  publication-title: AIP Conf. Proc.
– volume: 154
  start-page: 73
  year: 2018
  publication-title: Scr. Mater.
– volume: 69
  start-page: 479
  year: 2017
  publication-title: JOM
– volume: 9
  start-page: 1
  year: 2018
  publication-title: Nat. Commun.
– volume: 156
  start-page: 480
  year: 2018
  publication-title: Mater. Des.
– volume: 108
  start-page: 36
  year: 2016
  publication-title: Acta Mater.
– volume: 1516
  start-page: 49
  year: 2015
  publication-title: MRS Symp. Intermet. Alloy. Sci. Technol. Appl.
– volume: 2
  start-page: 041304
  year: 2015
  publication-title: Appl. Phys. Rev.
– volume: 10
  start-page: 154
  year: 2003
  publication-title: J. Synchrotron Radiat.
– year: 2014
– volume: 151
  start-page: 169
  year: 2018
  publication-title: Acta Mater.
– volume: 7
  start-page: 1
  year: 2017
  publication-title: Sci. Rep.
– volume: 89
  start-page: 055101
  year: 2018
  publication-title: Rev. Sci. Instrum.
– volume: 1
  start-page: 77
  year: 2014
  publication-title: Addit. Manuf.
– volume: 16
  start-page: 177
  year: 2017
  publication-title: Addit. Manuf.
– volume: 214
  start-page: 2915
  year: 2014
  publication-title: J. Mater. Process. Technol.
– volume: 139
  start-page: 081010
  year: 2017
  publication-title: J. Manuf. Sci. Eng.
– volume: 114
  start-page: 33
  year: 2016
  publication-title: Acta Mater.
– volume: 31
  start-page: 957
  year: 2015
  publication-title: Mater. Sci. Technol.
– year: 2002
– start-page: 275
  year: 2010
  end-page: 278
– volume: 21
  start-page: 598
  year: 2018
  publication-title: Addit. Manuf.
– volume: 14
  start-page: 300
  year: 2008
  publication-title: Rapid Prototyp. J.
– volume: 17
  start-page: 312
  year: 2011
  publication-title: Rapid Prototyp. J.
– volume: 46
  start-page: 151
  year: 2016
  publication-title: Annu. Rev. Mater. Res.
– volume: 40
  start-page: 5753
  year: 2007
  publication-title: J. Phys. D. Appl. Phys.
– volume: 23
  start-page: 1917
  year: 2014
  publication-title: J. Mater. Eng. Perform.
– volume: 363
  start-page: 849
  year: 2019
  publication-title: Science
– volume: 96
  start-page: 72
  year: 2015
  publication-title: Acta Mater.
– volume: 5
  start-page: 31
  year: 2015
  publication-title: Addit. Manuf.
– volume: 86
  start-page: 545
  year: 2015
  publication-title: Mater. Des.
– volume: 164
  start-page: 107534
  year: 2019
  publication-title: Mater. Des.
– volume: 1650
  start-page: 156
  year: 2015
  publication-title: AIP Conf. Proc.
– year: 2015
– ident: e_1_2_7_42_1
  doi: 10.1108/13552541111156450
– ident: e_1_2_7_22_1
  doi: 10.1038/s41598-017-04237-z
– ident: e_1_2_7_18_1
  doi: 10.1007/s11837-016-2234-1
– volume-title: Wohlers Report 2014 : 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report
  year: 2014
  ident: e_1_2_7_3_1
– ident: e_1_2_7_37_1
  doi: 10.1016/j.scriptamat.2018.05.033
– ident: e_1_2_7_24_1
  doi: 10.1016/j.addma.2017.06.007
– ident: e_1_2_7_27_1
  doi: 10.1016/j.addma.2014.12.001
– ident: e_1_2_7_34_1
  doi: 10.1016/j.actamat.2018.03.036
– ident: e_1_2_7_7_1
  doi: 10.1063/1.4937809
– ident: e_1_2_7_12_1
  doi: 10.1016/j.matdes.2018.06.049
– ident: e_1_2_7_16_1
  doi: 10.1016/j.addma.2014.08.001
– ident: e_1_2_7_40_1
  doi: 10.1007/978-1-84996-432-6_63
– ident: e_1_2_7_2_1
  doi: 10.1016/j.matdes.2016.01.099
– ident: e_1_2_7_31_1
  doi: 10.1038/s41598-016-0028-x
– ident: e_1_2_7_33_1
  doi: 10.1063/1.5017236
– ident: e_1_2_7_9_1
  doi: 10.1115/1.4035420
– ident: e_1_2_7_36_1
  doi: 10.1126/science.aav4687
– ident: e_1_2_7_4_1
  doi: 10.1007/s11665-014-0958-z
– ident: e_1_2_7_19_1
  doi: 10.1016/j.jmatprotec.2014.06.005
– ident: e_1_2_7_25_1
  doi: 10.1016/j.phpro.2010.08.080
– ident: e_1_2_7_8_1
  doi: 10.1146/annurev-matsci-070115-032024
– ident: e_1_2_7_32_1
  doi: 10.1107/S0909049502020289
– ident: e_1_2_7_30_1
  doi: 10.1063/1.4940605
– ident: e_1_2_7_5_1
  doi: 10.1016/j.actamat.2016.02.014
– ident: e_1_2_7_28_1
  doi: 10.1016/j.addma.2018.05.032
– ident: e_1_2_7_29_1
  doi: 10.1016/j.addma.2017.11.012
– volume-title: Standard Terminology for Additive Manufacturing – General Principles – Terminology
  year: 2015
  ident: e_1_2_7_6_1
– ident: e_1_2_7_20_1
  doi: 10.1016/j.matdes.2018.12.006
– ident: e_1_2_7_14_1
  doi: 10.1016/j.matdes.2015.07.147
– ident: e_1_2_7_15_1
  doi: 10.1108/13552540810907974
– ident: e_1_2_7_10_1
  doi: 10.1063/1.4914605
– ident: e_1_2_7_35_1
  doi: 10.1038/s41467-018-03734-7
– ident: e_1_2_7_13_1
  doi: 10.1016/j.msea.2015.10.068
– ident: e_1_2_7_26_1
  doi: 10.1016/j.cirp.2013.03.032
– ident: e_1_2_7_23_1
  doi: 10.1016/j.actamat.2016.05.017
– ident: e_1_2_7_38_1
  doi: 10.1088/0022-3727/44/44/445401
– ident: e_1_2_7_41_1
  doi: 10.1088/0022-3727/40/18/037
– volume: 1516
  start-page: 49
  year: 2015
  ident: e_1_2_7_11_1
  publication-title: MRS Symp. Intermet. Alloy. Sci. Technol. Appl.
– ident: e_1_2_7_17_1
  doi: 10.1016/j.actamat.2015.06.004
– ident: e_1_2_7_39_1
  doi: 10.1533/9781845690144
– ident: e_1_2_7_21_1
  doi: 10.1179/1743284714Y.0000000728
SSID ssj0011013
Score 2.4926095
Snippet Laser powder bed fusion (LPBF) metal additive manufacturing provides distinct advantages for aerospace and biomedical applications. However, widespread...
SourceID osti
crossref
wiley
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
SubjectTerms additive manufacturing
laser powder bed fusion
titanium
X-ray imaging
Title Laser‐Induced Keyhole Defect Dynamics during Metal Additive Manufacturing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.201900455
https://www.osti.gov/biblio/1557328
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLVQJxh4I0oBeUBicpvaThyPiFJVlDIgKnWL_MoCKqhNB5j4BL6RL8E3bkOLhJBgiRLFthLb1_fYOvdchM6s9wnSMENs5AThWkgibZITpj1eNlQIY-C8Y3Cb9Ib8ehSPlqL4gz5EdeAGllGu12DgSk9bX6KhwB4HapYEVAJR5kDYAlR0V-lHeddW5keGFN8EZGYWqo0Rba1WX_FKtSdvXatgtfQ23S2kFt8ZSCYPzVmhm-b1m4Tjf35kG23OoSi-CHNnB6258S7aWBIo3EP9G-_kJh9v75DhwziL--4FEurijgMaCO6EfPZTHKId8cAV0KK1JSMJD9R4BpET5ct9NOxe3V_2yDz9AjE8jWISp2nuAZiw3DEj0kQpYQTlqq2SRHpgLpSM09xvrf01YlpSamLDEr9oOJu0c8cOUG38NHaHCEuu8oirCGr61iLJtI5zZrjHX20naB2RRfdnZq5NDikyHrOgqkwz6KSs6qQ6Oq_KPwdVjh9LNmA0M48nQBTXAHvIFJlHUaBSVEe0HJlfGsnAKKqno79UaqB1uA80wGNUKyYzd-LhTKFPyyn7Cdt-6oY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFL2CMgADb0QpjwxITG7TOInjEVGqQpsOqJXYrNhxFlCKSjrAxCfwjXwJvkkTKBJCgiVSEttK_LrH1vE5AGexiQlcUUViWzPiSsYJj_2EUGnwsnIYUwr3O8Kh3xu7N3deySbEszCFPkS14YYjI5-vcYDjhnTrUzUU6ePIzeIIS7xlWEFb73xVdVspSJngljsko8k3QaGZUrfRdlqL-RfiUm1ixtciXM3jTXcTZPmlBc3kvjnLZFO9fBNx_NevbMHGHI1aF0X32YYlne7A-heNwl3oD0ycm76_vqHJh9Kx1dfP6KlrdTQyQaxOYWn_ZBUHHq1QZ1hiHOekJCuM0hkenshf7sG4ezW67JG5AwNRbmB7xAuCxGAwFruaKhb4UcQUc9yoHfk-N9icRdwLErO6NlebSu44ylPUN_OGjv12ouk-1NJJqg_A4m6U2G5kY05Tms2plF5ClWsgWFszpw6krH-h5vLk6JLxIAphZUdgJYmqkupwXqV_LIQ5fkzZwOYUBlKgLq5CApHKhAFSKFRUBydvml8KETguqrvDv2Q6hdXeKByIwfWw34A1fF6wAo-glk1n-tigm0ye5P33A5do7qE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGH7RCaIHv8U5P3oQPGXr2rRpjmId6j4QcbBbSZP0onRjdgc9-RP8jf4S87Zb3QQR9FJom4Q2ydv3aXjyPABnyuQELl1JlK0ZoTHjhCs_IW5s8LJ0GJMS1zu6Pf-6T28H3mBuF3-hD1EuuGFk5N9rDPCRShpfoqHIHkdqFkdU4i3DCvXtAOd1eF8KSJnclhsko8c3QZ2ZmWyj7TQW6y-kpcrQhNciWs3TTWsTxOxBC5bJY32SxXX5-k3D8T9vsgUbUyxqXRSTZxuWdLoD63MKhbvQ7pgsN_54e0eLD6mV1dYv6KhrhRp5IFZYGNo_W8V2R6urM2xRqZySZHVFOsGtE_nNPei3rh4ur8nUf4FIGtge8YIgMQiMKapdyQJfCCaZQ0VT-D43yJwJ7gWJ-bc2R9uNueNIT7q--Wpo5TcT7e5DJR2m-gAsTkViU2FjTdOazd049hJXUgPAmpo5VSCz7o_kVJwcPTKeokJW2Ymwk6Kyk6pwXpYfFbIcP5as4WhGBlCgKq5E-pDMIgOjUKaoCk4-Mr80EmFUlGeHf6l0Cqt3YSvq3PTaNVjDywUl8Agq2Xiijw20yeKTfPZ-Auiz7Vk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser%E2%80%90Induced+Keyhole+Defect+Dynamics+during+Metal+Additive+Manufacturing&rft.jtitle=Advanced+engineering+materials&rft.au=Kiss%2C+Andrew+M.&rft.au=Fong%2C+Anthony+Y.&rft.au=Calta%2C+Nicholas+P.&rft.au=Thampy%2C+Vivek&rft.date=2019-10-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=21&rft.issue=10&rft_id=info:doi/10.1002%2Fadem.201900455&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adem_201900455
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon