Laser‐Induced Keyhole Defect Dynamics during Metal Additive Manufacturing
Laser powder bed fusion (LPBF) metal additive manufacturing provides distinct advantages for aerospace and biomedical applications. However, widespread industrial adoption is limited by a lack of confidence in part properties driven by an incomplete understanding of how unique process parameters rel...
Saved in:
Published in | Advanced engineering materials Vol. 21; no. 10 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Blackwell (John Wiley & Sons)
01.10.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1438-1656 1527-2648 |
DOI | 10.1002/adem.201900455 |
Cover
Loading…
Abstract | Laser powder bed fusion (LPBF) metal additive manufacturing provides distinct advantages for aerospace and biomedical applications. However, widespread industrial adoption is limited by a lack of confidence in part properties driven by an incomplete understanding of how unique process parameters relate to defect formation and ultimately mechanical properties. To address that gap, high‐speed X‐ray imaging is used to probe subsurface melt pool dynamics and void‐formation mechanisms inaccessible to other monitoring approaches. This technique directly observes the depth and dynamic behavior of the vapor depression, also known as the keyhole depression, which is formed by recoil pressure from laser‐driven metal vaporization. Also, vapor bubble formation and motion due to melt pool currents is observed, including instances of bubbles splitting before solidification into clusters of smaller voids while the material rapidly cools. Other phenomena include bubbles being formed from and then recaptured by the vapor depression, leaving no voids in the final part. Such events complicate attempts to identify defect formation using surface‐sensitive process‐monitoring tools. Finally, once the void defects form, they cannot be repaired by simple laser scans, without introducing new defects, thus emphasizing the importance of understanding processing parameters to develop robust defect‐mitigation strategies based on experimentally validated models.
Void formation during laser powder bed fusion additive manufacturing is investigated using high‐speed X‐ray imaging. This nondestructive technique allows for imaging inside the component during the build process to visualize the highly dynamic vapor depression and capture void formation. Vapor depression depth and number of voids generated is measured to experimentally validate the theoretical keyholing threshold. |
---|---|
AbstractList | Laser powder bed fusion (LPBF) metal additive manufacturing provides distinct advantages for aerospace and biomedical applications. However, widespread industrial adoption is limited by a lack of confidence in part properties driven by an incomplete understanding of how unique process parameters relate to defect formation and ultimately mechanical properties. To address that gap, high‐speed X‐ray imaging is used to probe subsurface melt pool dynamics and void‐formation mechanisms inaccessible to other monitoring approaches. This technique directly observes the depth and dynamic behavior of the vapor depression, also known as the keyhole depression, which is formed by recoil pressure from laser‐driven metal vaporization. Also, vapor bubble formation and motion due to melt pool currents is observed, including instances of bubbles splitting before solidification into clusters of smaller voids while the material rapidly cools. Other phenomena include bubbles being formed from and then recaptured by the vapor depression, leaving no voids in the final part. Such events complicate attempts to identify defect formation using surface‐sensitive process‐monitoring tools. Finally, once the void defects form, they cannot be repaired by simple laser scans, without introducing new defects, thus emphasizing the importance of understanding processing parameters to develop robust defect‐mitigation strategies based on experimentally validated models.
Void formation during laser powder bed fusion additive manufacturing is investigated using high‐speed X‐ray imaging. This nondestructive technique allows for imaging inside the component during the build process to visualize the highly dynamic vapor depression and capture void formation. Vapor depression depth and number of voids generated is measured to experimentally validate the theoretical keyholing threshold. |
Author | Toney, Michael F. Martin, Aiden A. Thampy, Vivek Fong, Anthony Y. Kiss, Andrew M. Ott, Ryan T. Matthews, Manyalibo J. van Buuren, Anthony Depond, Philip J. Tassone, Christopher J. Stone, Kevin H. Calta, Nicholas P. Nelson Weker, Johanna Wang, Jenny Kramer, Matthew J. |
Author_xml | – sequence: 1 givenname: Andrew M. orcidid: 0000-0002-8515-5508 surname: Kiss fullname: Kiss, Andrew M. organization: SLAC National Accelerator Laboratory – sequence: 2 givenname: Anthony Y. surname: Fong fullname: Fong, Anthony Y. organization: SLAC National Accelerator Laboratory – sequence: 3 givenname: Nicholas P. surname: Calta fullname: Calta, Nicholas P. organization: Lawrence Livermore National Laboratory – sequence: 4 givenname: Vivek surname: Thampy fullname: Thampy, Vivek organization: SLAC National Accelerator Laboratory – sequence: 5 givenname: Aiden A. surname: Martin fullname: Martin, Aiden A. organization: Lawrence Livermore National Laboratory – sequence: 6 givenname: Philip J. surname: Depond fullname: Depond, Philip J. organization: Lawrence Livermore National Laboratory – sequence: 7 givenname: Jenny surname: Wang fullname: Wang, Jenny organization: Lawrence Livermore National Laboratory – sequence: 8 givenname: Manyalibo J. surname: Matthews fullname: Matthews, Manyalibo J. organization: Lawrence Livermore National Laboratory – sequence: 9 givenname: Ryan T. surname: Ott fullname: Ott, Ryan T. organization: Iowa State University – sequence: 10 givenname: Christopher J. surname: Tassone fullname: Tassone, Christopher J. organization: SLAC National Accelerator Laboratory – sequence: 11 givenname: Kevin H. surname: Stone fullname: Stone, Kevin H. organization: SLAC National Accelerator Laboratory – sequence: 12 givenname: Matthew J. surname: Kramer fullname: Kramer, Matthew J. organization: Iowa State University – sequence: 13 givenname: Anthony surname: van Buuren fullname: van Buuren, Anthony organization: Lawrence Livermore National Laboratory – sequence: 14 givenname: Michael F. surname: Toney fullname: Toney, Michael F. organization: SLAC National Accelerator Laboratory – sequence: 15 givenname: Johanna surname: Nelson Weker fullname: Nelson Weker, Johanna email: jlnelson@slac.stanford.edu organization: SLAC National Accelerator Laboratory |
BackLink | https://www.osti.gov/biblio/1557328$$D View this record in Osti.gov |
BookMark | eNqFkM9KAzEQxoNUsFavnhfvW_N3kz2Wtmppixc9h5jM2sg2K5tU6c1H8Bl9ErdWFATxMjMw3--b4TtGvdAEQOiM4CHBmF4YB-shxaTEmAtxgPpEUJnTgqteN3OmclKI4ggdx_iIMSGYsD6aL0yE9v31bRbcxoLL5rBdNTVkE6jApmyyDWbtbczcpvXhIVtCMnU2cs4n_wzZ0oRNZWz6XJ6gw8rUEU6_-gDdXU5vx9f54uZqNh4tcssVFrlQqsKlkI4Ds1IVxkgrKTfEFEWpFJWmFKqSnHYVs_uSUissKxiW4ApSARug871vE5PX0foEdmWbELqHNRFCMqo60XAvsm0TYwuVfmr92rRbTbDe5aV3eenvvDqA_wI6Y5N8E1JrfP03Vu6xF1_D9p8jejSZLn_YD-krgcI |
CitedBy_id | crossref_primary_10_1016_j_addma_2021_101875 crossref_primary_10_1080_17452759_2025_2474532 crossref_primary_10_1088_1402_4896_acedd6 crossref_primary_10_1557_mrs_2020_275 crossref_primary_10_1038_s41598_022_07261_w crossref_primary_10_1016_j_addma_2020_101336 crossref_primary_10_1016_j_addma_2020_101559 crossref_primary_10_1016_j_matdes_2020_108987 crossref_primary_10_3390_met14090961 crossref_primary_10_1002_advs_202203546 crossref_primary_10_1038_s41467_022_34122_x crossref_primary_10_1063_5_0080724 crossref_primary_10_1115_1_4062852 crossref_primary_10_1016_j_jnucmat_2022_153841 crossref_primary_10_1186_s40323_024_00276_0 crossref_primary_10_1016_j_cirpj_2021_06_015 crossref_primary_10_1016_j_jmapro_2022_06_031 crossref_primary_10_1007_s00170_022_10263_7 crossref_primary_10_1038_s41524_024_01198_6 crossref_primary_10_1016_j_addma_2021_102333 crossref_primary_10_1016_j_jmapro_2025_03_049 crossref_primary_10_1103_RevModPhys_94_045002 crossref_primary_10_1007_s12540_022_01263_z crossref_primary_10_1007_s00170_024_14156_9 crossref_primary_10_1016_j_jmapro_2023_03_065 crossref_primary_10_1016_j_cossms_2021_100974 crossref_primary_10_1038_s41467_023_43371_3 crossref_primary_10_1121_10_0006386 crossref_primary_10_2497_jjspm_16B_T6_34 crossref_primary_10_1016_j_addma_2020_101667 crossref_primary_10_3390_ma16010324 crossref_primary_10_1039_D4JA00159A crossref_primary_10_3390_micro3030044 crossref_primary_10_1038_s43246_024_00699_7 crossref_primary_10_1038_s41598_022_13940_5 crossref_primary_10_3390_ma14092374 crossref_primary_10_1063_1_5143766 crossref_primary_10_1007_s11661_020_06009_3 crossref_primary_10_1016_j_matdes_2022_110790 crossref_primary_10_1016_j_matdes_2023_111681 crossref_primary_10_1016_j_msea_2020_140002 crossref_primary_10_3390_jmmp6060141 crossref_primary_10_1016_j_addma_2020_101271 crossref_primary_10_1108_RPJ_05_2022_0145 crossref_primary_10_2207_jjws_93_440 crossref_primary_10_1016_j_cossms_2022_101024 crossref_primary_10_1140_epjb_s10051_021_00068_0 |
Cites_doi | 10.1108/13552541111156450 10.1038/s41598-017-04237-z 10.1007/s11837-016-2234-1 10.1016/j.scriptamat.2018.05.033 10.1016/j.addma.2017.06.007 10.1016/j.addma.2014.12.001 10.1016/j.actamat.2018.03.036 10.1063/1.4937809 10.1016/j.matdes.2018.06.049 10.1016/j.addma.2014.08.001 10.1007/978-1-84996-432-6_63 10.1016/j.matdes.2016.01.099 10.1038/s41598-016-0028-x 10.1063/1.5017236 10.1115/1.4035420 10.1126/science.aav4687 10.1007/s11665-014-0958-z 10.1016/j.jmatprotec.2014.06.005 10.1016/j.phpro.2010.08.080 10.1146/annurev-matsci-070115-032024 10.1107/S0909049502020289 10.1063/1.4940605 10.1016/j.actamat.2016.02.014 10.1016/j.addma.2018.05.032 10.1016/j.addma.2017.11.012 10.1016/j.matdes.2018.12.006 10.1016/j.matdes.2015.07.147 10.1108/13552540810907974 10.1063/1.4914605 10.1038/s41467-018-03734-7 10.1016/j.msea.2015.10.068 10.1016/j.cirp.2013.03.032 10.1016/j.actamat.2016.05.017 10.1088/0022-3727/44/44/445401 10.1088/0022-3727/40/18/037 10.1016/j.actamat.2015.06.004 10.1533/9781845690144 10.1179/1743284714Y.0000000728 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1002/adem.201900455 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1527-2648 |
EndPage | n/a |
ExternalDocumentID | 1557328 10_1002_adem_201900455 ADEM201900455 |
Genre | article |
GrantInformation_xml | – fundername: Basic Energy Sciences funderid: DE-AC02-07CH11358; DE-AC02-76SF00515; DE-SC0012704 – fundername: Advanced Manufacturing Office – fundername: National Nuclear Security Administration funderid: DE-AC52-07NA27344 |
GroupedDBID | -~X 05W 0R~ 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 50Y 52U 5GY 5VS 66C 6P2 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F5P FEDTE G-S GNP GODZA HGLYW HVGLF HZ~ IX1 JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E QRW R.K ROL RWI RX1 RYL SUPJJ TUS W99 WBKPD WIH WIK WOHZO WXSBR WYJ XPP XV2 ZZTAW AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 6XO AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI |
ID | FETCH-LOGICAL-c4805-588f0957d4e3c786aa7c724a1a6698827a958f74258f03b922c5c36307ed61fe3 |
IEDL.DBID | DR2 |
ISSN | 1438-1656 |
IngestDate | Fri May 19 02:14:03 EDT 2023 Thu Apr 24 22:54:11 EDT 2025 Tue Jul 01 02:51:04 EDT 2025 Wed Jan 22 16:40:46 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4805-588f0957d4e3c786aa7c724a1a6698827a958f74258f03b922c5c36307ed61fe3 |
Notes | USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22) USDOE National Nuclear Security Administration (NNSA) AC02-07CH11358; AC02-76SF00515; SC0012704; AC52-07NA27344 |
ORCID | 0000-0002-8515-5508 0000000285155508 |
OpenAccessLink | https://www.osti.gov/biblio/1557328 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_1557328 crossref_primary_10_1002_adem_201900455 crossref_citationtrail_10_1002_adem_201900455 wiley_primary_10_1002_adem_201900455_ADEM201900455 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2019 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Advanced engineering materials |
PublicationYear | 2019 |
Publisher | Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Blackwell (John Wiley & Sons) |
References | 2015; 2 2017; 7 2015; 5 2015; 1516 2017; 69 2016; 108 2016; 1706 2010 2015; 31 2013; 62 2015; 96 2008; 14 2016; 95 2002 2018; 89 2011; 17 2018; 22 2018; 21 2014; 23 2014; 214 2003; 10 2017; 139 2019; 164 2015; 1650 2019; 363 2014; 1 2018; 9 2018; 154 2018; 151 2017; 16 2015; 86 2018; 156 2016; 651 2011; 44 2015 2014 2007; 40 2016; 114 2010; 5 2016; 46 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 Bewlay B. P. (e_1_2_7_11_1) 2015; 1516 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 F42.19 (e_1_2_7_6_1) 2015 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 Wohlers T. (e_1_2_7_3_1) 2014 |
References_xml | – volume: 5 start-page: 523 year: 2010 publication-title: Phys. Procedia – volume: 44 start-page: 445401 year: 2011 publication-title: J. Phys. D: Appl. Phys. – volume: 95 start-page: 431 year: 2016 publication-title: Mater. Des. – volume: 22 start-page: 548 year: 2018 publication-title: Addit. Manuf. – volume: 651 start-page: 198 year: 2016 publication-title: Mater. Sci. Eng. A – volume: 62 start-page: 223 year: 2013 publication-title: CIRP Ann. Manuf. Technol. – volume: 1706 start-page: 130002 year: 2016 publication-title: AIP Conf. Proc. – volume: 154 start-page: 73 year: 2018 publication-title: Scr. Mater. – volume: 69 start-page: 479 year: 2017 publication-title: JOM – volume: 9 start-page: 1 year: 2018 publication-title: Nat. Commun. – volume: 156 start-page: 480 year: 2018 publication-title: Mater. Des. – volume: 108 start-page: 36 year: 2016 publication-title: Acta Mater. – volume: 1516 start-page: 49 year: 2015 publication-title: MRS Symp. Intermet. Alloy. Sci. Technol. Appl. – volume: 2 start-page: 041304 year: 2015 publication-title: Appl. Phys. Rev. – volume: 10 start-page: 154 year: 2003 publication-title: J. Synchrotron Radiat. – year: 2014 – volume: 151 start-page: 169 year: 2018 publication-title: Acta Mater. – volume: 7 start-page: 1 year: 2017 publication-title: Sci. Rep. – volume: 89 start-page: 055101 year: 2018 publication-title: Rev. Sci. Instrum. – volume: 1 start-page: 77 year: 2014 publication-title: Addit. Manuf. – volume: 16 start-page: 177 year: 2017 publication-title: Addit. Manuf. – volume: 214 start-page: 2915 year: 2014 publication-title: J. Mater. Process. Technol. – volume: 139 start-page: 081010 year: 2017 publication-title: J. Manuf. Sci. Eng. – volume: 114 start-page: 33 year: 2016 publication-title: Acta Mater. – volume: 31 start-page: 957 year: 2015 publication-title: Mater. Sci. Technol. – year: 2002 – start-page: 275 year: 2010 end-page: 278 – volume: 21 start-page: 598 year: 2018 publication-title: Addit. Manuf. – volume: 14 start-page: 300 year: 2008 publication-title: Rapid Prototyp. J. – volume: 17 start-page: 312 year: 2011 publication-title: Rapid Prototyp. J. – volume: 46 start-page: 151 year: 2016 publication-title: Annu. Rev. Mater. Res. – volume: 40 start-page: 5753 year: 2007 publication-title: J. Phys. D. Appl. Phys. – volume: 23 start-page: 1917 year: 2014 publication-title: J. Mater. Eng. Perform. – volume: 363 start-page: 849 year: 2019 publication-title: Science – volume: 96 start-page: 72 year: 2015 publication-title: Acta Mater. – volume: 5 start-page: 31 year: 2015 publication-title: Addit. Manuf. – volume: 86 start-page: 545 year: 2015 publication-title: Mater. Des. – volume: 164 start-page: 107534 year: 2019 publication-title: Mater. Des. – volume: 1650 start-page: 156 year: 2015 publication-title: AIP Conf. Proc. – year: 2015 – ident: e_1_2_7_42_1 doi: 10.1108/13552541111156450 – ident: e_1_2_7_22_1 doi: 10.1038/s41598-017-04237-z – ident: e_1_2_7_18_1 doi: 10.1007/s11837-016-2234-1 – volume-title: Wohlers Report 2014 : 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report year: 2014 ident: e_1_2_7_3_1 – ident: e_1_2_7_37_1 doi: 10.1016/j.scriptamat.2018.05.033 – ident: e_1_2_7_24_1 doi: 10.1016/j.addma.2017.06.007 – ident: e_1_2_7_27_1 doi: 10.1016/j.addma.2014.12.001 – ident: e_1_2_7_34_1 doi: 10.1016/j.actamat.2018.03.036 – ident: e_1_2_7_7_1 doi: 10.1063/1.4937809 – ident: e_1_2_7_12_1 doi: 10.1016/j.matdes.2018.06.049 – ident: e_1_2_7_16_1 doi: 10.1016/j.addma.2014.08.001 – ident: e_1_2_7_40_1 doi: 10.1007/978-1-84996-432-6_63 – ident: e_1_2_7_2_1 doi: 10.1016/j.matdes.2016.01.099 – ident: e_1_2_7_31_1 doi: 10.1038/s41598-016-0028-x – ident: e_1_2_7_33_1 doi: 10.1063/1.5017236 – ident: e_1_2_7_9_1 doi: 10.1115/1.4035420 – ident: e_1_2_7_36_1 doi: 10.1126/science.aav4687 – ident: e_1_2_7_4_1 doi: 10.1007/s11665-014-0958-z – ident: e_1_2_7_19_1 doi: 10.1016/j.jmatprotec.2014.06.005 – ident: e_1_2_7_25_1 doi: 10.1016/j.phpro.2010.08.080 – ident: e_1_2_7_8_1 doi: 10.1146/annurev-matsci-070115-032024 – ident: e_1_2_7_32_1 doi: 10.1107/S0909049502020289 – ident: e_1_2_7_30_1 doi: 10.1063/1.4940605 – ident: e_1_2_7_5_1 doi: 10.1016/j.actamat.2016.02.014 – ident: e_1_2_7_28_1 doi: 10.1016/j.addma.2018.05.032 – ident: e_1_2_7_29_1 doi: 10.1016/j.addma.2017.11.012 – volume-title: Standard Terminology for Additive Manufacturing – General Principles – Terminology year: 2015 ident: e_1_2_7_6_1 – ident: e_1_2_7_20_1 doi: 10.1016/j.matdes.2018.12.006 – ident: e_1_2_7_14_1 doi: 10.1016/j.matdes.2015.07.147 – ident: e_1_2_7_15_1 doi: 10.1108/13552540810907974 – ident: e_1_2_7_10_1 doi: 10.1063/1.4914605 – ident: e_1_2_7_35_1 doi: 10.1038/s41467-018-03734-7 – ident: e_1_2_7_13_1 doi: 10.1016/j.msea.2015.10.068 – ident: e_1_2_7_26_1 doi: 10.1016/j.cirp.2013.03.032 – ident: e_1_2_7_23_1 doi: 10.1016/j.actamat.2016.05.017 – ident: e_1_2_7_38_1 doi: 10.1088/0022-3727/44/44/445401 – ident: e_1_2_7_41_1 doi: 10.1088/0022-3727/40/18/037 – volume: 1516 start-page: 49 year: 2015 ident: e_1_2_7_11_1 publication-title: MRS Symp. Intermet. Alloy. Sci. Technol. Appl. – ident: e_1_2_7_17_1 doi: 10.1016/j.actamat.2015.06.004 – ident: e_1_2_7_39_1 doi: 10.1533/9781845690144 – ident: e_1_2_7_21_1 doi: 10.1179/1743284714Y.0000000728 |
SSID | ssj0011013 |
Score | 2.4926095 |
Snippet | Laser powder bed fusion (LPBF) metal additive manufacturing provides distinct advantages for aerospace and biomedical applications. However, widespread... |
SourceID | osti crossref wiley |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
SubjectTerms | additive manufacturing laser powder bed fusion titanium X-ray imaging |
Title | Laser‐Induced Keyhole Defect Dynamics during Metal Additive Manufacturing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.201900455 https://www.osti.gov/biblio/1557328 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLVQJxh4I0oBeUBicpvaThyPiFJVlDIgKnWL_MoCKqhNB5j4BL6RL8E3bkOLhJBgiRLFthLb1_fYOvdchM6s9wnSMENs5AThWkgibZITpj1eNlQIY-C8Y3Cb9Ib8ehSPlqL4gz5EdeAGllGu12DgSk9bX6KhwB4HapYEVAJR5kDYAlR0V-lHeddW5keGFN8EZGYWqo0Rba1WX_FKtSdvXatgtfQ23S2kFt8ZSCYPzVmhm-b1m4Tjf35kG23OoSi-CHNnB6258S7aWBIo3EP9G-_kJh9v75DhwziL--4FEurijgMaCO6EfPZTHKId8cAV0KK1JSMJD9R4BpET5ct9NOxe3V_2yDz9AjE8jWISp2nuAZiw3DEj0kQpYQTlqq2SRHpgLpSM09xvrf01YlpSamLDEr9oOJu0c8cOUG38NHaHCEuu8oirCGr61iLJtI5zZrjHX20naB2RRfdnZq5NDikyHrOgqkwz6KSs6qQ6Oq_KPwdVjh9LNmA0M48nQBTXAHvIFJlHUaBSVEe0HJlfGsnAKKqno79UaqB1uA80wGNUKyYzd-LhTKFPyyn7Cdt-6oY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFL2CMgADb0QpjwxITG7TOInjEVGqQpsOqJXYrNhxFlCKSjrAxCfwjXwJvkkTKBJCgiVSEttK_LrH1vE5AGexiQlcUUViWzPiSsYJj_2EUGnwsnIYUwr3O8Kh3xu7N3deySbEszCFPkS14YYjI5-vcYDjhnTrUzUU6ePIzeIIS7xlWEFb73xVdVspSJngljsko8k3QaGZUrfRdlqL-RfiUm1ixtciXM3jTXcTZPmlBc3kvjnLZFO9fBNx_NevbMHGHI1aF0X32YYlne7A-heNwl3oD0ycm76_vqHJh9Kx1dfP6KlrdTQyQaxOYWn_ZBUHHq1QZ1hiHOekJCuM0hkenshf7sG4ezW67JG5AwNRbmB7xAuCxGAwFruaKhb4UcQUc9yoHfk-N9icRdwLErO6NlebSu44ylPUN_OGjv12ouk-1NJJqg_A4m6U2G5kY05Tms2plF5ClWsgWFszpw6krH-h5vLk6JLxIAphZUdgJYmqkupwXqV_LIQ5fkzZwOYUBlKgLq5CApHKhAFSKFRUBydvml8KETguqrvDv2Q6hdXeKByIwfWw34A1fF6wAo-glk1n-tigm0ye5P33A5do7qE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGH7RCaIHv8U5P3oQPGXr2rRpjmId6j4QcbBbSZP0onRjdgc9-RP8jf4S87Zb3QQR9FJom4Q2ydv3aXjyPABnyuQELl1JlK0ZoTHjhCs_IW5s8LJ0GJMS1zu6Pf-6T28H3mBuF3-hD1EuuGFk5N9rDPCRShpfoqHIHkdqFkdU4i3DCvXtAOd1eF8KSJnclhsko8c3QZ2ZmWyj7TQW6y-kpcrQhNciWs3TTWsTxOxBC5bJY32SxXX5-k3D8T9vsgUbUyxqXRSTZxuWdLoD63MKhbvQ7pgsN_54e0eLD6mV1dYv6KhrhRp5IFZYGNo_W8V2R6urM2xRqZySZHVFOsGtE_nNPei3rh4ur8nUf4FIGtge8YIgMQiMKapdyQJfCCaZQ0VT-D43yJwJ7gWJ-bc2R9uNueNIT7q--Wpo5TcT7e5DJR2m-gAsTkViU2FjTdOazd049hJXUgPAmpo5VSCz7o_kVJwcPTKeokJW2Ymwk6Kyk6pwXpYfFbIcP5as4WhGBlCgKq5E-pDMIgOjUKaoCk4-Mr80EmFUlGeHf6l0Cqt3YSvq3PTaNVjDywUl8Agq2Xiijw20yeKTfPZ-Auiz7Vk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser%E2%80%90Induced+Keyhole+Defect+Dynamics+during+Metal+Additive+Manufacturing&rft.jtitle=Advanced+engineering+materials&rft.au=Kiss%2C+Andrew+M.&rft.au=Fong%2C+Anthony+Y.&rft.au=Calta%2C+Nicholas+P.&rft.au=Thampy%2C+Vivek&rft.date=2019-10-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=21&rft.issue=10&rft_id=info:doi/10.1002%2Fadem.201900455&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adem_201900455 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon |