Advances in alternating electromagnetic field data processing for earthquake monitoring in China

The alternating electromagnetic(EM) field is one of the most sensitive physical fields related to earthquakes. There have been a number of publications reporting EM anomalies associated with earthquakes. With increasing applications and research of artificial-source extremely low frequency EM and sa...

Full description

Saved in:
Bibliographic Details
Published inScience China. Earth sciences Vol. 58; no. 2; pp. 172 - 182
Main Authors Zhao, GuoZe, Bi, YaXin, Wang, LiFeng, Han, Bing, Wang, Xiao, Xiao, QiBin, Cai, JunTao, Zhan, Yan, Chen, XiaoBin, Tang, Ji, Wang, JiJun
Format Journal Article
LanguageEnglish
Published Heidelberg Science China Press 01.02.2015
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The alternating electromagnetic(EM) field is one of the most sensitive physical fields related to earthquakes. There have been a number of publications reporting EM anomalies associated with earthquakes. With increasing applications and research of artificial-source extremely low frequency EM and satellite EM technologies in earthquake studies, the amount of observed data from the alternating EM method increases rapidly and exponentially, so it is imperative to develop suitable and effective methods for processing and analyzing the influx of big data. This paper presents research on the self-adaptive filter and wavelet techniques and their applications to analyzing EM data obtained from ground measurements and satellite observations, respectively. Analysis results show that the self-adaptive filter method can identify both natural- and artificial-source EM signals, and enhance the ratio between signal and noise of EM field spectra, apparent resistivity, and others. The wavelet analysis is capable of detecting possible correlation between EM anomalies and seismic events. These techniques are effective in processing and analyzing massive data obtained from EM observations.
Bibliography:The alternating electromagnetic(EM) field is one of the most sensitive physical fields related to earthquakes. There have been a number of publications reporting EM anomalies associated with earthquakes. With increasing applications and research of artificial-source extremely low frequency EM and satellite EM technologies in earthquake studies, the amount of observed data from the alternating EM method increases rapidly and exponentially, so it is imperative to develop suitable and effective methods for processing and analyzing the influx of big data. This paper presents research on the self-adaptive filter and wavelet techniques and their applications to analyzing EM data obtained from ground measurements and satellite observations, respectively. Analysis results show that the self-adaptive filter method can identify both natural- and artificial-source EM signals, and enhance the ratio between signal and noise of EM field spectra, apparent resistivity, and others. The wavelet analysis is capable of detecting possible correlation between EM anomalies and seismic events. These techniques are effective in processing and analyzing massive data obtained from EM observations.
wavelet alternating detecting capable exponentially captured apparent publications extremely processed
11-5843/P
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1674-7313
1869-1897
DOI:10.1007/s11430-014-5012-3