Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries
Electrochemical energy storage is one of the main societal challenges of this century. The performances of classical lithium-ion technology based on liquid electrolytes have made great advances in the past two decades, but the intrinsic instability of liquid electrolytes results in safety issues. So...
Saved in:
Published in | Nature materials Vol. 12; no. 5; pp. 452 - 457 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2013
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Electrochemical energy storage is one of the main societal challenges of this century. The performances of classical lithium-ion technology based on liquid electrolytes have made great advances in the past two decades, but the intrinsic instability of liquid electrolytes results in safety issues. Solid polymer electrolytes would be a perfect solution to those safety issues, miniaturization and enhancement of energy density. However, as in liquids, the fraction of charge carried by lithium ions is small (<20%), limiting the power performances. Solid polymer electrolytes operate at 80 °C, resulting in poor mechanical properties and a limited electrochemical stability window. Here we describe a multifunctional single-ion polymer electrolyte based on polyanionic block copolymers comprising polystyrene segments. It overcomes most of the above limitations, with a lithium-ion transport number close to unity, excellent mechanical properties and an electrochemical stability window spanning 5 V versus Li
+
/Li. A prototype battery using this polyelectrolyte outperforms a conventional battery based on a polymer electrolyte.
Development of the classical lithium-ion technology based on liquid electrolytes has been limited to a certain extent by the intrinsic instability of liquid electrolytes and their mechanical properties. A multifunctional single-ion polymer electrolyte based on polyanionic block copolymers consisting of polystyrene segments is now shown to exhibit enhanced lithium-ion transport, mechanical properties and electrochemical stability window. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1476-1122 1476-4660 |
DOI: | 10.1038/nmat3602 |