Tolerance of Chrysantemum maximum to heavy metals:The potential for its use in the revegetation of tailings heaps

To find if ornamental plants are applicable to the remediation of metal-polluted areas, the tolerance of chrysanthemum plants (Chysanthemum maximum) var. Shasta to different metals under hydroponic conditions was studied. Their responses as influenced by the mycorrhizal fungus Glomus mosseae (Nicol....

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental sciences (China) Vol. 25; no. 2; pp. 367 - 375
Main Author Ma.del Carmen A.Gonzlez-Chvez Rogelio Carrillo-Gonzlez
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.2013
Colegio de Postgraduados, Programa de Edafología, Carr.México-Texcoco, km 36.5, Montecillo, Texcoco estado de México 56230, México
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To find if ornamental plants are applicable to the remediation of metal-polluted areas, the tolerance of chrysanthemum plants (Chysanthemum maximum) var. Shasta to different metals under hydroponic conditions was studied. Their responses as influenced by the mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe BEG25 on substrates containing mine residues were also investigated. Our results showed that chrysanthemum is a metal-tolerant plant under hydroponic conditions, plants behaving as Pb-excluders, whereas Cd, Cu and Ni were accumulated in roots. Low accumulation in flowers was observed for Cd and Cu but it was concentration-dependent. Ni and Pb were not translocated to flowers. Shoot biomass was not significantly affected by the different rates of mine residue addition for both mycorrhizal and non-mycorrhizal plants. Mycorrhizal plants accumulated less Pb and Cu in both shoots and roots than non-mycorrhizal plants. Chysanthemum could be a prospective plant for revegetation of tailings and the use of inoculation may decrease plant metal accumulation in polluted soils.
Bibliography:To find if ornamental plants are applicable to the remediation of metal-polluted areas, the tolerance of chrysanthemum plants (Chysanthemum maximum) var. Shasta to different metals under hydroponic conditions was studied. Their responses as influenced by the mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe BEG25 on substrates containing mine residues were also investigated. Our results showed that chrysanthemum is a metal-tolerant plant under hydroponic conditions, plants behaving as Pb-excluders, whereas Cd, Cu and Ni were accumulated in roots. Low accumulation in flowers was observed for Cd and Cu but it was concentration-dependent. Ni and Pb were not translocated to flowers. Shoot biomass was not significantly affected by the different rates of mine residue addition for both mycorrhizal and non-mycorrhizal plants. Mycorrhizal plants accumulated less Pb and Cu in both shoots and roots than non-mycorrhizal plants. Chysanthemum could be a prospective plant for revegetation of tailings and the use of inoculation may decrease plant metal accumulation in polluted soils.
mine residues ornamental plants phytostabilization urban remediation
11-2629/X
http://dx.doi.org/10.1016/S1001-0742(12)60060-6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1001-0742
1878-7320
DOI:10.1016/S1001-0742(12)60060-6