Interfacial modification of hole transport layers for efficient large-area perovskite solar cells achieved via blade-coating
Efficient large-area planar heterojunction (PHJ) perovskite solar cells (PSCs) were successfully developed by adapting a scalable doctor blade printing method under ambient condition. To achieve high-quality perovskite films onto poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) la...
Saved in:
Published in | Solar energy materials and solar cells Vol. 144; pp. 309 - 315 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Efficient large-area planar heterojunction (PHJ) perovskite solar cells (PSCs) were successfully developed by adapting a scalable doctor blade printing method under ambient condition. To achieve high-quality perovskite films onto poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) layer, the PEDOT:PSS was modified by adding poly(4-styrenesulfonic acid) (PSSH), which uses the electrostatic interaction between the sulfonyl functional groups in PEDOT:PSS and perovskite precursor ions. The resulting perovskite film on the modified PEDOT:PSS (M-PEDOT:PSS) exhibited excellent uniformity and surface coverage with high crystallinity even for large-area (15mm×40mm) scale. In addition, the power conversion efficiency (PCE) of the printed PSCs was significantly improved from 6% to 10.15% by introducing our M-PEDOT:PSS layer. This finding provides an important guideline to achieve highly efficient PSCs using scalable printing techniques.
[Display omitted]
•Efficient perovskite solar cells were fabricated using a doctor blade method.•The coverage of bladed perovskite films were improved by modifying PEDOT:PSS.•The printable PHJ perovskite solar cells exhibited a high efficiency of 10.15%.•Large-area scale (15mm×40mm) PHJ perovskite solar cell was demonstrated. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0927-0248 1879-3398 |
DOI: | 10.1016/j.solmat.2015.09.018 |